
EDF R&D

Fluid Dynamics, Power Generation and Environment Department
Single Phase Thermal-Hydraulics Group

6, quai Watier
F-78401 Chatou Cedex

Tel: 33 1 30 87 75 40
Fax: 33 1 30 87 79 16 JUNE 2022

code saturne documentation

code saturne version 7.2 practical user’s guide

contact: saturne-support@edf.fr

http://code-saturne.org/ c© EDF 2022

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 1/70

ABSTRACT

code saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D ax-
isymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady
or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars
and turbulent fluctuations of scalars can be taken into account. The code includes specific modules,
referred to as “specific physics”, for the treatment of Lagrangian particle tracking, semi-transparent
radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and elec-
tric arcs) and compressible flows. code saturne relies on a finite volume discretisation and allows the
use of various mesh types which may be hybrid (containing several kinds of elements) and may have
structural non-conformities (hanging nodes).

The present document is a practical user’s guide for code saturne version 7.2. It is the result of the
joint effort of all the members in the development team. It presents all the necessary elements to run
a calculation with code saturne version 7.2. It then lists all the variables of the code which may be
useful for more advanced utilisation. The user subroutines of all the modules within the code are then
documented. Eventually, for each key word and user-modifiable parameter in the code, their definition,
allowed values, default values and conditions for use are given. These key words and parameters are
grouped under headings based on their function. An alphabetical index list is also given at the end of
the document for easier consultation.

code saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. code saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 2/70

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 3/70

TABLE OF CONTENTS

1 Introduction . 7

2 Basic modelling setup . 7

2.1 Manage boundary conditions . 7

2.1.1 Coding of standard boundary conditions 8

2.1.2 Coding of non-standard boundary conditions 10

2.1.3 Checking of the boundary conditions 13

2.1.4 Sorting of the boundary faces . 13

2.2 User source terms . 13

2.2.1 In Navier-Stokes . 14

2.2.2 For k and ε . 15

2.2.3 For Rij and ε . 15

2.2.4 For ϕ and f . 15

2.2.5 For k and ω . 15

2.2.6 For ν̃t . 16

2.2.7 For user scalars . 16

3 Advanced modelling setup . 16

3.1 Use of a specific physics . 16

3.2 Pulverised coal and gas combustion module 21

3.2.1 Boundary conditions . 23

3.2.2 Initialisation of the options of the variables 25

3.3 Heavy fuel oil combustion module . 28

3.3.1 Initialisation of transported variables 28

3.3.2 Boundary conditions . 28

3.4 Radiative thermal transfers in semi-transparent gray media 29

3.4.1 Initialisation of the radiation main parameters 29

3.4.2 Radiative transfers boundary conditions 30

3.4.3 Absorption coefficient of the medium, boundary conditions for
the luminance and calculation of the net radiative flux 32

3.5 Conjugate heat transfer . 33

3.5.1 Thermal module in a 1D wall . 33

3.5.2 Internal Fluid-Thermal coupling . 33

3.5.3 Fluid-Thermal coupling with SYRTHES 34

3.6 Particle-tracking (Lagrangian) Module . 35

3.6.1 General information . 35

3.6.2 Activating the particle-tracking module 35

3.6.3 Basic guidelines for standard simulations 35

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 4/70

3.6.4 Prescribing the main modelling parameters 36

3.6.5 Prescribing particle boundary conditions 37

3.6.6 Advanced particle-tracking set-up . 38

3.7 Compressible module . 39

3.7.1 Initialisation of the options of the variables 39

3.7.2 Management of the boundary conditions 40

3.7.3 Initialisation of the variables . 40

3.7.4 Management of variable physical properties 41

3.8 Management of the electric arcs module . 41

3.8.1 Activating the electric arcs module 41

3.8.2 Initialisation of the variables . 41

3.8.3 Variable physical properties . 41

3.8.4 Boundary conditions . 42

3.8.5 Initialisation of the variable options 43

3.9 code saturne-code saturne coupling . 43

3.10 Fluid-Structure external coupling . 44

3.11 ALE module . 45

3.11.1 Initialisation of the options . 45

3.11.2 Mesh velocity boundary conditions . 46

3.11.3 Modification of the mesh viscosity . 47

3.11.4 Fluid - Structure internal coupling 47

3.12 Management of the structure property . 48

3.13 Management of the atmospheric module . 48

3.13.1 Directory structure . 49

3.13.2 The atmospheric mesh features . 49

3.13.3 Atmospheric flow model and steady/unsteady algorithm 49

3.13.4 Physical properties . 50

3.13.5 Boundary and initial conditions . 50

3.13.6 User subroutines . 52

3.13.7 Physical models . 52

3.13.8 Atmospheric main variables . 53

3.13.9 Recommendations . 54

3.14 Turbomachinery computations . 55

3.14.1 Introduction . 55

3.14.2 Meshing reccomendations . 55

3.14.3 Turbomachinery dedicated postprocessing functions 56

3.14.4 Data setting, keywords and examples 56

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 5/70

3.15 Cavitation module . 56

4 Keyword list . 61

4.1 Input-output . 61

4.1.1 ”Calculation” files . 62

4.2 Numerical options . 62

4.2.1 Calculation management . 62

4.2.2 Scalar unknowns . 62

4.2.3 Definition of the equations . 62

4.2.4 Definition of the time advancement 62

4.2.5 Turbulence . 63

4.2.6 Time scheme . 64

4.2.7 Gradient reconstruction . 64

4.2.8 Solution of the linear systems . 64

4.2.9 Convective scheme . 64

4.2.10 Pressure-continuity step . 64

4.2.11 Error estimators for Navier-Stokes 64

4.2.12 Calculation of the distance to the wall 66

4.2.13 Others . 66

4.3 Numerical, physical and modelling parameters 66

4.3.1 Numeric parameters . 66

4.3.2 Physical parameters . 66

4.3.3 Physical variables . 67

4.4 ALE . 67

4.5 Thermal radiative transfers: global settings 67

4.6 Electric module (Joule effect and electric arcs): specificities 67

5 Bibliography . 68

Index of the main variables and keywords . 69

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 6/70

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 7/70

1 Introduction
This document is a practical user guide for code saturne version 7.2. It is the result of the joint effort
of all the members in the development team.

This document provides practical information for the usage of code saturne. For more details about
the algorithms and their numerical implementation, please refer to the reports [1], and [9], and to the
theoretical documentation [10].

The latest updated version of this document is available on-line with the version of code saturne and
accessible through the command code saturne info --guide theory.

This document presents some the necessary elements to run a calculation with code saturne version
7.2. It then lists all the variables of the code which may be useful for more advanced users. The user
subroutines of all the modules within the code are then documented. Eventually, for each keyword and
user-modifiable parameter in the code, their definition, allowed values, default values and conditions
for use are given. These keywords and parameters are grouped under headings based on their function.
An alphabetical index is also given at the end of the document for easier reference.

In addition to the present user guide, a complete Doxygen documentation is available with code saturne.
It can provide information about the implementation such as details on variables used throughout the
solver and the user subroutines. It also provides an easily explorable set of user subroutine examples
and Fortran-C naming references for quantities linked to the mesh or the physical fields.

The user documentation is in the process of migration from this pdf documentation to the Doxygen
documentation, so the user should first lok there. One can access the Doxygen main page through this
link or from a terminal by typing the following command: code saturne info --guide theory.

2 Basic modelling setup

2.1 Manage boundary conditions

cs user boundary conditions is the second compulsory subroutine for every calculation launched
without interface (except in the case of specific physics where the corresponding boundary condition
user subroutine must be used).

When using the interface, only complex boundary conditions (input profiles, conditions varying in
time, ...) need to be defined with cs user boundary conditions. In the case of a calculation launched
without the interface, all the boundary conditions must appear in cs user boundary conditions.

cs user boundary conditions is essentially constituted of loops on boundary face subsets. Several
sequences of call getfbr (’criterion’, nlelt, lstelt) (cf. §??) allow selecting the boundary
faces with respect to their group(s), their color(s) or geometric criteria. If needed, geometric and
physical variables are also available to the user. These allow him to select the boundary faces using
other criteria.

For more details about the treatment of boundary conditions, the user may refer to the theoretical and
computer documentation [10] of the subroutine condli (for wall conditions, see clptur) (to access
this document on a workstation, use code saturne info --guide theory).

From the user point of view, the boundary conditions are fully defined by three arrays1: itypfb(nfabor),
icodcl(nfabor,nvar) and rcodcl(nfabor,nvar,3).

- itypfb(ifac) defines the type of the face ifac (input, wall, ...).

- icodcl(ifac,ivar) defines the type of boundary condition for the variable ivar on the face
ifac (Dirichlet, flux ...).

1Except with Lagrangian boundary condition

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 8/70

- rcodcl(ifac,ivar,.) gives the numerical values associated with the type of boundary condition
(value of the Dirichlet condition, of the flux ...).

In the case of standard boundary conditions (see §2.1.1), it is sufficient to complete itypfb(ifac)

and parts of the array rcodcl; the array icodcl and most of rcodcl are filled automatically. For
non-standard boundary conditions (see §2.1.2), the arrays icodcl and rcodcl must be fully completed.

2.1.1 Coding of standard boundary conditions

The standard keywords used by the indicator itypfb are: ientre, iparoi, iparug, isymet, isolib,
ifrent, ifresf, i convective inlet and iindef.

• If itypfb=ientre: inlet face.

→ Zero-flux condition for pressure and Dirichlet condition for all other variables. The value
of the Dirichlet condition must be given in rcodcl(ifac,ivar,1) for every value of ivar,
except for ivar=ipr. The other values of rcodcl and icodcl are filled automatically.

• If itypfb=iparoi: smooth solid wall face, impermeable and with friction.

→ the eventual sliding wall velocity of the face is found in rcodcl(ifac,ivar,1) (ivar being
iu, iv or iw). The initial values of rcodcl(ifac,ivar,1) are zero for the three velocity
components (and therefore are to be specified only if the velocity is not equal to zero).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code only uses the projection of this velocity on the face. As a consequence, if the velocity
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.

→ For scalars, two kinds of boundary conditions can be defined:

 Imposed value at the wall. The user must write
icodcl(ifac,ivar)=5
rcodcl(ifac,ivar,1)=imposed value

 Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)=imposed flux value (depending on the variable, the user

may refer to the case icodcl=3 of § 2.1.2 for the flux definition).

 If the user does not fill these arrays, the default condition is zero flux.

• If itypfb=iparug: rough solid wall face, impermeable and with friction.

→ the eventual moving velocity of the wall tangent to the face is given by rcodcl(ifac,ivar,1)

(ivar being iu, iv or iw). The initial value of rcodcl(ifac,ivar,1) is zero for the three
velocity components (and therefore must be specified only in the case of the existence of a
slipping velocity).
WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the veloc-
ity specified by the user is not in the face plane, the wall moving velocity really taken into
account will be different.

→ The dynamic roughness must be specified in rcodcl(ifac,iu,3). The values of rcodcl(ifac,iv,3)
stores the thermal and scalar roughness. The values of rcodcl(ifac,iw,3) is not used.

→ For scalars, two kinds of boundary conditions can be defined:

 Imposed value at the wall. The user must write
icodcl(ifac,ivar)=6
rcodcl(ifac,ivar,1)=imposed value

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 9/70

 Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)= imposed flux value (definition of the flux condition ac-

cording to the variable, the user can refer to the case icodcl=3 of the paragraph 2.1.2).

 If the user does not complete these arrays, the default condition is zero flux.

• If itypfb=isymet: symmetry face (or wall without friction).

→ Nothing to be writen in icodcl and rcodcl.

• If itypfb=isolib: free outlet face (or more precisely free inlet/outlet with forced pressure)

→ The pressure is always treated with a Dirichlet condition, calculated with the constraint
∂

∂n

(
∂P

∂τ

)
= 0. The pressure is set to P0 at the first isolib face met. The pressure

calibration is always done on a single face, even if there are several outlets.

→ If the mass flow is coming in, the velocity is set to zero and a Dirichlet condition for the
scalars and the turbulent quantities is used (or zero-flux condition if no Dirichlet value has
been specified).

→ If the mass flow is going out, zero-flux condition are set for the velocity, the scalars and the
turbulent quantities.

→ Nothing is written in icodcl or rcodcl for the pressure or the velocity. An optional Dirichlet
condition can be specified for the scalars and turbulent quantities.

• If itypfb=ifrent: free outlet, free inlet (based on Bernoulli relationship) face.

→ if outlet, the equivalent to standard outlet. In case of ingoing flux, the Benoulli relationship
which links pressure and velocity is used (see the thory guide for more information). An
additional head loss modelling what is going on outward of the domain can be added by the
user.

• If itypfb=ifresf: free-surface boundary condition.

• If itypfb=i convective inlet: inlet with zero diffusive flux for all transported variables (species
and velocity). This allows to exactly impose the ingoing flux.

• If itypfb=iindef: undefined type face (non-standard case).

→ Coding is done in a non-standard way by filling both arrays rcodcl and icodcl (see § 2.1.2).

Notes

• Whatever is the value of the indicator itypfb(ifac), if the array icodcl(ifac,ivar) is modified by
the user (i.e. filled with a non-zero value), the code will not use the default conditions for the variable
ivar at the face ifac. It will take into account only the values of icodcl and rcodcl provided by the
user (these arrays must then be fully completed, like in the non-standard case).
For instance, for a normal symmetry face where scalar 1 is associated with a Dirichlet condition equal
to 23.8 (with an infinite exchange coefficient):

itypfb(ifac)=isymet

icodcl(ifac,isca(1))=1

rcodcl(ifac,isca(1),1)=23.8

(rcodcl(ifac,isca(1),2)=rinfin is the default value, therefore it is not necessary to specify a value)
The boundary conditions for the other variables are automatically defined.

• The user can define new types of boundary faces. He only must choose a value N and to fully specify
the boundary conditions (see §2.1.2). He must specify itypfb(ifac)=N where N range is 1 to ntypmx

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 10/70

(maximum number of boundary face types), and of course different from the values ientre, iparoi,
iparug, isymet, isolib and iindef (the values of these variables are given in the paramx module).
This allows to easily isolate some boundary faces, in order for instance to calculate balances.

Boundary condition types

The gradient boundary conditions in code saturne boil down to determine a value for the current
variable Y at the boundary faces fb, that is to say Yfb , value expressed as a function of YI′ , value of Y
in I ′, projection of the center of the adjacent cell on the straight line perpendicular to the boundary
face and crossing its center:

Yfb = Agfb +BgfbYI′ . (1)

For a face ifac, the pair of coefficients Agfb , B
g
fb

is may be accessed using the field get coefa s and
field get coefb s functions, replacing s with v for a vector.

The flux boundary conditions in code saturne boil down to determine the value of the diffusive flux
of the current variable Y at the boundary faces fb, that is to say Dib (Kfb , Y), value expressed as
a function of YI′ , value of Y in I ′, projection of the center of the adjacent cell on the straight line
perpendicular to the boundary face and crossing its center:

Dib (Kfb , Y) = Affb +BffbYI′ . (2)

For a face ifac, the pair of coefficients Affb , B
f
fb

may be accessed using the field get coefaf s and
field get coefbf s functions, replacing s with v for a vector.

The divergence boundary conditions in code saturne boil down to determine a value for the current
variable Y (mainly the Reynolds stress components, the divergence div

(
R
)

used in the calculation of
the momentum equation) at the boundary faces fb, that is to say Yfb , value expressed as a function of
YI′ , value of Y in I ′, projection of the center of the adjacent cell on the straight line perpendicular to
the boundary face and crossing its center:

Yfb = Adfb +BdfbYI′ . (3)

For a face ifac, the pair of coefficients Adfb , B
d
fb

may be accessed using the field get coefad s and
field get coefbd s functions, replacing s with v for a vector.

2.1.2 Coding of non-standard boundary conditions

Ifa face does not correspond to a standard type, the user must completely fill the arrays itypfb,
icodcl and rcodcl. itypfb(ifac) is then equal to iindef or another value defined by the user (see
note at the end of § 2.1.1). The arrays icodcl and rcodcl must be filled as follows:

• If icodcl(ifac,ivar)=1: Dirichlet condition at the face ifac for the variable ivar.

→ rcodcl(ifac,ivar,1) is the value of the variable ivar at the face ifac.

→ rcodcl(ifac,ivar,2) is the value of the exchange coefficient between the outside and the
fluid for the variable ivar. An infinite value (rcodcl(ifac,ivar,2)=rinfin) indicates an
ideal transfer between the outside and the fluid (default case).

→ rcodcl(ifac,ivar,3) is not used.

→ rcodcl(ifac,ivar,1) has the units of the variable ivar, i.e.:

 m/s for the velocity

 m2/s2 for the Reynolds stress

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 11/70

 m2/s3 for the dissipation

 Pa for the pressure

 ◦C for the temperature

 J.kg−1 for the enthalpy

 ◦C2 for temperature fluctuations

 J2.kg−2 for enthalpy fluctuations

→ rcodcl(ifac,ivar,2) has the following units (defined in such way that when multiplying
the exchange coefficient by the variable, the given flux has the same units as the flux defined
below when icodcl=3):

 kg.m−2.s−1 for the velocity

 kg.m−2.s−1 for the Reynolds stress

 s.m−1 for the pressure

 W.m−2.◦C−1 for the temperature

 kg.m−2.s−1 for the enthalpy

• If icodcl(ifac,ivar)=2: radiative outlet at the face ifac for the variable ivar. It reads
∂Y

∂t
+ C

∂Y

∂n
= 0, where C is a to be defined celerity of radiation.

→ rcodcl(ifac,ivar,3) is not used.

→ rcodcl(ifac,ivar,1) is the flux value of ivar at the cell center I ′, projection of the center
of the adjacent cell on the straight line perpendicular to the boundary face and crossing its
center, at the previous time step. It corresponds to:

→ rcodcl(ifac,ivar,2) is CFL number based on the parameter C, the distance to the bound-

ary I ′F and the time step: CFL =
Cdt

I ′F
,

• If icodcl(ifac,ivar)=3: flux condition at the face ifac for the variable ivar.

→ rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) are not used.

→ rcodcl(ifac,ivar,3) is the flux value of ivar at the wall. This flux is negative if it is a
source for the fluid. It corresponds to:

 −(λT + Cp
µt
σT

)∇T · n for a temperature (in W/m2)

−(
λT
Cp

+
µt
σh

)∇h · n for an enthalpy (in W/m2).

−(λϕ +
µt
σϕ

)∇ϕ ·n in the case of another scalar ϕ (in kg.m−2.s−1.[ϕ], where [ϕ] are the

units of ϕ).

 −∆t ∇P · n for the pressure (in kg.m−2.s−1).

 −(µ+ µt)∇Ui · n for a velocity component (in kg.m−1.s−2).

 −µ∇Rij · n for a Rij tensor component (in W/m2).

• If icodcl(ifac,ivar)=4: symmetry condition, for the symmetry faces or wall faces without
friction. This condition can only be used for velocity components (U · n = 0) and the Rij tensor
components (for other variables, a zero-flux condition type is usually used).

• If icodcl(ifac,ivar)=5: friction condition, for wall faces with friction. This condition can not
be applied to the pressure.

 For the velocity and (if necessary) the turbulent variables, the values at the wall are cal-
culated from theoretical profiles. In the case of a sliding wall, the three components of the
sliding velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 12/70

rcodcl(ifac,iw,1)).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.

 For other scalars, the condition icodcl=5 is similar to icodcl=1, but with a wall exchange
coefficient calculated from a theoretical law. Therefore, the values of
rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) must be specified: see [10].

• If icodcl(ifac,ivar)=6: friction condition, for the rough-wall faces with friction. This condi-
tion can not be used with the pressure.

 For the velocity and (if necessary) the turbulent variables, the values at the wall are cal-
culated from theoretical profiles. In the case of a sliding wall, the three components of the
sliding velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and
rcodcl(ifac,iw,1)).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.
The dynamic roughness height is given by rcodcl(ifac,iu,3) only.

 For the other scalars, the condition icodcl=6 is similar to icodcl=1, but with a wall
exchange coefficient calculated from a theoretical law. The values of rcodcl(ifac,ivar,1)
and rcodcl(ifac,ivar,2) must therefore be specified: see [10]. The thermal roughness
height is then given by rcodcl(ifac,ivar,3).

• If icodcl(ifac,ivar)=9: free outlet condition for the velocity. This condition is only applicable
to velocity components.
If the mass flow at the face is negative, this condition is equivalent to a zero-flux condition.
If the mass flow at the face is positive, the velocity at the face is set to zero (but not the mass
flow).
rcodcl is not used.

• If icodcl(ifac,ivar)=14: generalized symmetry boundary condition for vectors (Marangoni
effect for the velocity for instance). This condition is only applicable to vectors and set a Dirich-
let boundary condition on the normal component and a Neumann condition on the tangential
components.
If the three components are ivar1, ivar2, ivar3, the required values are:

→ rcodcl(ifac,ivar1,1): Dirichlet value in the x direction.

→ rcodcl(ifac,ivar2,1): Dirichlet value in the y direction.

→ rcodcl(ifac,ivar3,1): Dirichlet value in the z direction.

→ rcodcl(ifac,ivar1,3): flux value for the x direction.

→ rcodcl(ifac,ivar2,3): flux value for the y direction.

→ rcodcl(ifac,ivar3,3): flux value for the z direction.

Therefore, the code automatically computes the boundary condition to impose to the normal
and to the tangential components.

Note
• A standard isolib outlet face amounts to a Dirichlet condition (icodcl=1) for the pressure, a free
outlet condition (icodcl=9) for the velocity and a Dirichlet condition (icodcl=1) if the user has
specified a Dirichlet value or a zero-flux condition (icodcl=3) for the other variables.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 13/70

2.1.3 Checking of the boundary conditions

The code checks the main compatibilities between the boundary conditions. In particular, the following
rules must be respected:
• On each face, the boundary conditions of the three velocity components must belong to the same
type. The same is true for the components of the Rij tensor.
• If the boundary conditions for the velocity belong to the “sliding” type (icodcl=4), the conditions
for Rij must belong to the “symmetry” type (icodcl=4), and vice versa.
• If the boundary conditions for the velocity belong to the “friction” type (icodcl=5 or 6), the
boundary conditions for the turbulent variables must belong to the “friction” type, too.
• If the boundary condition of a scalar belongs to the “friction” type, the boundary condition of the
velocity must belong to the “friction” type, too.

In case of mistakes, if the post-processing output is activated (which is the default setting), a special
error output, similar to the mesh format, is produced in order to help correcting boundary condition
definitions.

2.1.4 Sorting of the boundary faces

In the code, it may be necessary to have access to all the boundary faces of a given type. To ease this
kind of search, an array made of sorted faces is automatically filled (and updated at each time step):
itrifb(nfabor).
ifac=itrifb(i) is the number of the ith face of type 1.
ifac=itrifb(i+n) is the number of the ith face of type 2, if there are n faces of type 1.
... etc.

Two auxiliary arrays of size ntypmx are also defined.
idebty(ityp) is the index corresponding to the first face of type ityp in the array itrifb.
ifinty(ityp) is the index corresponding to the last face of type ityp in the array itrifb.

Therefore, a value ifac0 found between idebty(ityp) and ifinty(ityp) is associated to each face
ifac of type ityp=itypfb(ifac), so that ifac=itrifb(ifac0).

If there is no face of type ityp, the code set
ifinty(ityp)=idebty(ityp)-1,
which enables to bypass, for all the missing ityp, the loops such as
do ii=idebty(ityp),ifinty(ityp).

The values of all these indicators are displayed at the beginning of the code execution log.

2.2 User source terms

Assume, for example, that the user source terms modify the equation of a variable ϕ in the following
way:

ρ
∂ϕ

∂t
+ . . . = . . .+ Simpl × ϕ+ Sexpl

The example is valid for a velocity component, for a turbulent variable (k, ε, Rij , ω, ϕ or f) and for
a scalar (or for the average of the square of the fluctuations of a scalar), because the syntax of all the
subroutines ustsnv, cs user turbulence source terms and ustssc in the cs user source terms

file is similar.

In the finite volume formulation, the solved system is then modified as follows:(
ρiΩi
∆ti

− ΩiSimpl,i

)(
ϕ

(n+1)
i − ϕ(n)

i

)
+ . . . = . . .+ ΩiSimpl,iϕ

(n)
i + ΩiSexpl,i

The user needs therefore to provide the following values:
crvimpi = ΩiSimpl,i

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 14/70

crvexpi = ΩiSexpl,i

In practice, it is essential for the term

(
ρiΩi
∆ti

− ΩiSimpl,i

)
to be positive. To ensure this property, the

equation really taken into account by the code is the following:(
ρiΩi
∆ti

−Min(ΩiSimpl,i; 0)

)(
ϕ

(n+1)
i − ϕ(n)

i

)
+ . . . = . . .+ ΩiSimpl,iϕ

(n)
i + ΩiSexpl,i

To make the “implicitation” effective, the source term decomposition between the implicit and explicit
parts will be done by the user who must ensure that crvimpi = ΩiSimpl,i is always negative (otherwise
the solved equation remains right, but there will not be “implicitation”).

WARNING: When the second-order in time is used along with the extrapolation of the source terms2,
it is no longer possible to test the sign of Simpl,i, because of coherence reasons (for more details, the
user may refer to the theoretical and computer documentation [10] of the subroutine preduv). The
user must therefore make sure it is always positive (or take the risk to affect the calculation stability).

Particular case of a linearised source term

In some cases, the added source term is not linear, but the user may want to linearise it using a
first-order Taylor development, in order to make it partially implicit.
Consider an equation of the type:

ρ
∂ϕ

∂t
= F (ϕ)

To make it implicit using the following method:

ρiΩi
∆t

(
ϕ

(n+1)
i − ϕ(n)

i

)
= Ωi

[
F (ϕ

(n)
i) +

(
ϕ

(n+1)
i − ϕ(n)

i

) dF
dϕ

(ϕ
(n)
i)

]
= Ωi

dF

dϕ
(ϕ

(n)
i)× ϕ(n+1)

i + Ωi

[
F (ϕ

(n)
i)− dF

dϕ
(ϕ

(n)
i)× ϕ(n)

i

]

The user must therefore specify:

crvimpi = Ωi
dF

dϕ
(ϕ

(n)
i)

crvexpi = Ωi

[
F (ϕ

(n)
i)− dF

dϕ
(ϕ

(n)
i)× ϕ(n)

i

]
Example:

If the equation is ρ
∂ϕ

∂t
= −Kϕ2, the user must set:

crvimpi = −2KΩiϕ
(n)
i

crvexpi = KΩi[ϕ
(n)
i]2

2.2.1 In Navier-Stokes

The source term in Navier-Stokes can be filled in thanks to the GUI or the cs user source terms user
file. Without the GUI, the subroutine ustsnv is used to add user source terms to the Navier-Stokes
equations (at each time step).

ustsnv is called only once per time step; for each cell iel, the vector crvexp(.,iel) (explicit part)
and the matrix crvimp(.,.,iel) (implicit part) must be filled in for the whole velocity vector.

2indicator isno2t for the velocity, isto2t for the turbulence and isso2t for the scalars

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 15/70

2.2.2 For k and ε

Subroutine called every time step, for the k − ε and the v2f models.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the turbulent kinetics energy k and to the turbulent dissipation ε. This subroutine is
called every time step (the treatment of the two variables k and ε is made simultaneously). The user is
expected to provide the arrays crkimp and crkexp for k, and creimp and creexp for ε. These arrays
are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine ustsnv. The
way of making implicit the resulting source terms is the same as the one presented in ustsnv. For ϕ
and f̄ in the v2f model, see cs user turbulence source terms, §2.2.4.

2.2.3 For Rij and ε

Subroutine called every time step, for the Rij − ε models.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the Reynolds stress variables Rij and to the turbulent dissipation ε. This subroutine is
called 7 times every time step (once for each Reynolds stress component and once for the dissipation).
The user must provide the arrays crvimp and crvexp for the field variable of index f id (referring
successively to ir11, ir22, ir33, ir12, ir13, ir23 and iep). These arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsnv. The method for impliciting
the resulting source terms is the same as that presented in ustsnv.

2.2.4 For ϕ and f

Subroutine called every time step, for the v2f models.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the variables ϕ and f of the v2f ϕ-model. This subroutine is called twice every time
step (once for ϕ and once for f). The user is expected to provide the arrays crvimp and crvexp

for ivar referring successively to iphi and ifb. Concerning ϕ, these arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsnv. Concerning f , the equation
is slightly different:

L2div(∇(f)) = f + . . .+ Simpl × f + Sexpl

In the finite volume formulation, the solved system is written as:∫
∂Ωi

∇(f)(n+1)dS =
1

L2
i

(
Ωif

(n+1)

i + . . .+ ΩiSimpl,if
(n+1)

i + ΩiSexpl,i

)
The user must then specify:
crvimpi = ΩiSimpl,i
crvexpi = ΩiSexpl,i

The way of making implicit the resulting source terms is the same as the one presented in ustsnv.

2.2.5 For k and ω

Subroutine called every time step, for the k − ω SST model.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the turbulent kinetics energy k and to the specific dissipation rate ω. This subroutine
is called every time step (the treatment of the two variables k and ω is made simultaneously). The
user is expected to provide the arrays crkimp and crkexp for the variable k, and the arrays crwimp

and crwexp for the variable ω. These arrays are similar to the arrays crvimp and crvexp given for
the velocity in the user subroutine ustsnv. The way of making implicit the resulting source terms is
the same as the one presented in ustsnv.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 16/70

2.2.6 For ν̃t

Subroutine called every time step, or the Spalart-Allmaras model.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the turbulent viscosity νt for the Spalart-Allmaras model. This subroutine is called
every time step. The user is expected to provide the arrays crkimp and crkexp for the variable ν̃t.
These arrays are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine
ustsnv. The way of making implicit the resulting source terms is the same as the one presented in
ustsnv.

2.2.7 For user scalars

Subroutine called every time step.

The source terms in the transport equations related to the user scalars (passive or not, average of the
square of the fluctuations of a scalar, ...) can be filled in thanks to the GUI or the cs user source terms

user file. Without the GUI, the subroutine ustssc is used to add source terms to the transport equa-
tions related to the user scalars. In the same way as ustsnv, this subroutine is called every time step,
once for each user scalar. The user must provide the arrays crvimp and crvexp related to each scalar.
cvimp and crvexp must be set to 0 for the scalars on which it is not wished for the user source term
to be applied (the arrays are initially set to 0 at each inlet in the subroutine).

3 Advanced modelling setup

3.1 Use of a specific physics

Specific physics such as dispersed phase, atmospheric flows, gas combustion, pulverised fuel combus-
tion, electrical model and compressible model can be added by the user from the interface, or by
using the subroutine usppmo of the cs user parameters.f90 file (called only during the calculation
initialisation). With the interface, when a specific physics is activated in Figure ??, additional items
or headings may appear (see for instance Sections 3.6.4 and 3.2.0.1).

When the interface is not used, usppmo is one of the three subroutines which must be completed by the
user in order to use a specific physics module (only heavy fuel combustion is not available with the GUI).
At the moment, code saturne allows to use two “pulverised coal” modules (with Lagrangian coupling or
not) and one “pulverised heavy fuel” module, two “gas combustion” modules, two “electrical” modules,
a “compressible” module, and an “atmospheric” module. To activate one of these modules, the user
must complete one (and only one) of the indicators ippmod(i.....) in the subroutine usppmo. By
default, all the indicators ippmod(i.....) are initialised at -1, which means that no specific physics
is activated.

• Diffusion flame in the framework of “3 points” rapid complete chemistry: indicator ippmod(icod3p)

→ ippmod(icod3p) = 0 adiabatic conditions

→ ippmod(icod3p) = 1 permeatic conditions (enthalpy transport)

→ ippmod(icod3p) =-1 module not activated

• Eddy Break Up pre-mixed flame: indicator ippmod(icoebu)

→ ippmod(icoebu) = 0 adiabatic conditions at constant richness

→ ippmod(icoebu) = 1 permeatic conditions at constant richness

→ ippmod(icoebu) = 2 adiabatic conditions at variable richness

→ ippmod(icoebu) = 3 permeatic conditions at variable richness

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 17/70

→ ippmod(icoebu) =-1 module not activated

• Libby-Williams pre-mixed flame: indicator ippmod(icolwc)

→ ippmod(icolwc)=0 two peak model with adiabiatic conditions.

→ ippmod(icolwc)=1 two peak model with permeatic conditions.

→ ippmod(icolwc)=2 three peak model with adiabiatic conditions.

→ ippmod(icolwc)=3 three peak model with permeatic conditions.

→ ippmod(icolwc)=4 four peak model with adiabiatic conditions.

→ ippmod(icolwc)=5 four peak model with permeatic conditions.

→ ippmod(icolwc)=-1 module not activated.

• Multi-coals and multi-classes pulverised coal combustion: indicator ippmod(iccoal) The number
of different coals must be less than or equal to ncharm = 3. The number of particle size classes
nclpch(icha) for the coal icha, must be less than or equal to ncpcmx = 10.

→ ippmod(iccoal) = 0 imbalance between the temperature of the continuous and the solid
phases

→ ippmod(iccoal) = 1 otherwise

→ ippmod(iccoal) =-1 module not activated

• Multi-classes pulverised heavy fuel combustion: indicator ippmod(icfuel)

→ ippmod(icfuel) = 0 module activated

→ ippmod(icfuel) =-1 module not activated

• Lagrangian modelling of multi-coals and multi-classes pulverised coal combustion: indicator
ippmod(icpl3c) The number of different coals must be less than or equal to ncharm = 3. The
number of particle size classes nclpch(icha) for the coal icha, must be less than or equal to
ncpcmx = 10.

→ ippmod(icpl3c) = 1 coupling with the Lagrangian module, with transport of H2

→ ippmod(icpl3c) =-1 module not activated

• Electric arcs module (Joule effect and Laplace forces): indicator ippmod(ielarc)

→ ippmod(ielarc) = 1 determination of the magnetic field by means of the Ampere’s theorem
(not available)

→ ippmod(ielarc) = 2 determination of the magnetic field by means of the vector potential

→ ippmod(ielarc) =-1 module not activated

• Joule effect module (Laplace forces not taken into account): indicator ippmod(ieljou)

→ ippmod(ieljou) = 1 use of a real potential

→ ippmod(ieljou) = 2 use of a complex potential

→ ippmod(ieljou) = 3 use of real potential and specific boundary conditions for transformers.

→ ippmod(ieljou) = 4 use of complex potential and specific boundary conditions for trans-
formers.

→ ippmod(ieljou) =-1 module not activated

• Compressible module: indicator ippmod(icompf)

→ ippmod(icompf) = 0 module activated

→ ippmod(icompf) =-1 module not activated

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 18/70

• Atmospheric flow module: indicator ippmod(iatmos)

→ ippmod(iatmos) =-1 module not activated

→ ippmod(iatmos) = 0 standard modelling

→ ippmod(iatmos) = 1 dry atmosphere

→ ippmod(iatmos) = 2 humid atmosphere

WARNING: Only one specific physics module can be activated at the same time.

In the framework of the gas combustion modelling, the user may impose his own enthalpy-temperature
tabulation (conversion law). He needs then to give the value zero to the indicator indjon (the default
value being 1). For more details, the user may refer to the following note (thermochemical files).

Note: the thermo-chemical files
The user must not forget to place in the directory DATA the thermochemical file dp C3P, dp C3PSJ or
dp ELE (depending on the specific physics module he activated) Some example files are placed in the
directory DATA/REFERENCE at the creation of the study case. Their content is described below.

• Example of file for the gas combustion:

→ if the enthalpy-temperature conversion data base JANAF is used: dp C3P (see array 1).

→ if the user provides his own enthalpy-temperature tabulation (there must be three chemical
species and only one reaction): dp C3PSJ (see array 2). This file replaces dp C3P.

• Example of file for the electric arcs: dp ELE (see array 3).

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 19/70

Lines Examples of values Variables Observations

1 5 ngaze Number of current species

2 10 npo Number of points for the
enthalpy-temperature table

3 300. tmin Lower temperature limit
for the table

4 3000. tmax Upper temperature limi t
for the tabulation

5 Empty line

6 CH4 O2 CO2 H2O N2 nomcoe(ngaze) List of the current species

7 .35 .35 .35 .35 .35 kabse(ngaze) Absorption coefficient
of the current species

8 4 nato Number of elemental species

9 .012 1 0 1 0 0 wmolat(nato), Molar mass of the elemental
10 .001 4 0 0 2 0 species (first column)
11 .016 0 2 2 1 0 atgaze(ngaze,nato) Composition of the current species
12 .014 0 0 0 0 2 as a function of the elemental species

(ngaze following columns)

13 3 ngazg Number of global species
Here, ngazg = 3 (Fuel, Oxidiser and Products)

14 1. 0. 0. 0. 0. Composition of the global species as a
15 0. 1. 0. 0. 3.76 compog(ngaze,ngazg) function of the current species of line 6
16 0. 0. 1. 2. 7.52 In the order: Fuel (line 15),

Oxidiser (line 16) and Product (line 17)

17 1 nrgaz Number of global reactions
Here nrgaz = 1 (always equal to 1

in this version)

18 igfuel(nrgaz), Numbers of the global species concerned by
1 2 -1 -9.52 10.52 igoxy(nrgaz), the stoichiometric ratio

(first 2 integers)
stoeg(ngazg,nrgaz) Stoichiometry in global species reaction.

Negative for the reactants (here
“Fuel” and “Oxidiser”) and positive for

the products (here “Products”)

Table 1: Example of file for the gas combustion when JANAF is used: dp C3P

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 20/70

Lines Examples of values Variables Observations

1 6 npo Number of tabulation points

2 50. -0.32E+07 -0.22E+06 -0.13E+08
3 250. -0.68E+06 -0.44E+05 -0.13E+08 th(npo), Temperature(first column),
4 450. 0.21E+07 0.14E+06 -0.13E+08 ehgazg(1,npo), mass enthalpies of fuel, oxidiser
5 650. 0.50E+07 0.33E+06 -0.12E+08 ehgazg(2,npo), and products (columns 2,3 and 4)
6 850. 0.80E+07 0.54E+06 -0.12E+08 ehgazg(3,npo) from line 2 to line npo+1
7 1050. 0.11E+08 0.76E+06 -0.11E+08

8 .00219 .1387 .159 wmolg(1), Molar masses of fuel,
wmolg(2), oxidiser
wmolg(3) and products

9 .11111 fs(1) Mixing rate at the stoichiometry
(relating to Fuel and Oxidiser)

10 0.4 0.5 0.87 ckabsg(1), Absorption coefficients of the fuel,
ckabsg(2), oxidiser
ckabsg(3) and products

11 1. 2. xco2, xh2o Molar coefficients of CO2

and H2O in the products
(using Modak radiation)

Table 2: Example of file for the gas combustion when the user provides his own enthalpy-temperature
table (there must be three species and only one reaction): dp C3PSJ (this file replaces dp C3P)

Lines Examples of values Variables Observations

1 # Free format ASCII file ... Free comment

2 # Comment lines ... Free comment

3 # ... Free comment

4 # Argon propoerties ... Free comment

5 # ... Free comment

6 # No of NGAZG and No ... Free comment

7 # NGAZG NPO ... Free comment

8 1 238 ngazg Number of species
npo Number of given temperature points for

the tabulated physical properties
(npo 6 npot set in ppthch)

So there will be ngazg blocks of npo lines each

9 # ... Free comment

14 0 ixkabe Radiation options for xkabe

15 # ... Free comment

16 # Propreties ... Free comment

17 # T H ... Free comment

18 # Temperature Enthalpy ... Free comment

19 # ... Free comment

20 # K J/kg ... Free comment

21 # ... Free comment

22 300. 14000. ... In line tabulation of the physical properties
as a function of the temperature in Kelvin

for each of the ngazg species
h Enthalpy in J/kg

roel Density in kg/m3
cpel Specific heat in J/(kg K)
sigel Electric conductivity in Ohm/m
visel Dynamic viscosity in kg/(m s)
xlabel Thermal conductivity in W/(m K)
xkabel Absorption coefficient (radiation)

Table 3: Example of file for the electric arcs module: dp ELE

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 21/70

3.2 Pulverised coal and gas combustion module (needs update)

3.2.0.1 Initialisation of the variables

For coal combustion, it is possible to initialise the specific variables in the Graphical User Interface
(GUI) or in the subroutine cs user initialization. In the GUI, when a coal combustion physics
is selected in the item “Calculation features” under the heading “Thermophysical models”, an addi-
tional item appears: “Pulverized coal combustion”. In this item the user can define coal types, their
composition, the oxidant and reactions parameters, see Figure 1 to Figure 4.

Figure 1: Thermophysical models - Pulverized coal combustion, coal classes

If the user deals with gas combustion or if he (or she) does not want to use the GUI for coal combustion,
the subroutine cs user initialization must be used (only during the calculation initialisation).
In this section, “specific physics” will refer to gas combustion or to pulverised coal combustion.

These subroutines allow the user to initialise some variables specific to the specific physics activated
via usppmo. As usual, the user may have access to several geometric variables to discriminate between
different initialisation zones if needed.

It should be recalled again that the user can access the array of values of the variables as described
in the the doxygen documentation dedicated to the fields management. In the following description,
only variables indices ivar are given, but field indices can be retrieved easily by using ivarfl(ivar).

WARNING: in the case of a specific physics modelling, all the variables will be initialised here, even
the potential user scalars: cs user initialization is no longer used.

• in the case of the EBU pre-mixed flame module, the user can initialise in every cell iel: the
mixing rate isca(ifm) in variable richness, the fresh gas mass fraction
isca(iygfm) and the mixture enthalpy isca(iscalt) in permeatic conditions

• in the case of the rapid complete chemistry diffusion flame module, the user can initialise in every
cell iel: the mixing rate isca(ifm), its variance isca(ifp2m) and the mixture mass enthalpy
isca(iscalt) in permeatic conditions

• in the case of the pulverised coal combustion module, the user can initialise in every cell iel:

→ the transport variables related to the solid phase

isca(ixch(icla)) the reactive coal mass fraction related to the class icla (icla from
1 to nclacp which is the total number of classes, i.e. for all the coal type)

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 22/70

Figure 2: Pulverized coal combustion, coal composition

Figure 3: Pulverized coal combustion, reaction parameters

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 23/70

Figure 4: Pulverized coal combustion, oxydant

isca(ixck(icla)) the coke mass fraction related to the class icla

isca(inp(icla)) the number of particles related to class icla per kg of air-coal mix-
ture

isca(ih2(icla)) the mass enthalpy related to the class icla in permeatic conditions

→ isca(iscalt) the mixture enthalpy

→ the transport variables related to the gas phase

isca(if1m(icha)) the mean value of the tracer 1 representing the light volatile matters
released by the coal icha

isca(if2m(icha)) the mean value of the tracer 2 representing the heavy volatile mat-
ters released by the coal icha

isca(if3m) the mean value of the tracer 3 representing the carbon released as CO
during coke burnout

isca(if4p2m) the variance associated with the tracer 4 representing the air (the mean
value of this tracer is not transported, it can be deduced directly from the three others)

isca(ifp3m) the variance associated with the tracer 3

3.2.1 Boundary conditions

In this section, “specific physics” refers to gas combustion or to pulverised coal combustion.
For coal combustion, it is possible to manage the boundary conditions in the Graphical User Interface
(GUI). When the coal combustion physics is selected in the heading “Thermophysical models”, specific
boundary conditions are activated for inlets, see Figure 5. The user fills for each type of coal previously
defined (see § 3.2.0.1) the initial temperature and initial composition of the inlet flow, as well as the
mass flow rate.

For gas combustion or if the GUI is not used for coal combustion, the use of cs user boundary conditions

(called at every time step) is as mandatory as cs user parameters.f90 and usppmo to run a calcu-
lation involving specific physics. The way of using them is the same as using in the framework of
standard calculations, that is, run several loops on the boundary faces lists (cf. §??) marked out by
their colors, groups, or geometrical criterion, where the type of face, the type of boundary condition
for each variable and eventually the value of each variable are defined.

WARNING: In the case of a specific physics modelling, all the boundary conditions for every variable
must be defined here, even for the eventual user scalars: cs user boundary conditions is not used
at all.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 24/70

Figure 5: Boundary conditions for the combustion of coal

In the case of a specific physics modelling, a zone number izone 3 (for instance the color icoul) is
associated with every boundary face, in order to gather together all the boundary faces of the same
type. In comparison to cs user boundary conditions, the main change from the user point of view
concerns the faces whose boundary conditions belong to the type itypfb=ientre:

• for the EBU pre-mixed flame module:

→ the user can choose between the “burned gas inlet” type (marked out by the burned gas
indicator ientgb(izone)=1) and the “fresh gas inlet” type (marked out by the fresh gas
indicator ientgf(izone)=1)

→ for each inlet type (fresh or burned gas), a mass flow or a velocity must be imposed:

- to impose the mass flow,

- the user gives to the indicator iqimp(izone) the value 1,

- the mass flow value is set in qimp(izone) (positive value, in kgs−1)

- finally he imposes the velocity vector direction by giving the components of a di-
rection vector in rcodcl(ifac,iu), rcodcl(ifac,iv) and rcodcl(ifac,iw)

WARNING:

- the variable qimp(izone) refers to the mass flow across the whole zone izone and
not across a boundary face (specifically for the axi-symmetric calculations, the inlet
surface of the mesh must be broken up)

3izone must be less than the maximum number of boundary zone allowable by the code, nozppm. This is fixed at
2000 in pppvar;not to be modified

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 25/70

- the variable qimp(izone) deals with the inflow across the area izoz and only across
this zone; it is recommended to pay attention to the boundary conditions.

- the velocity direction vector is neither necessarily normed, nor necessarily incoming.

- to impose a velocity, the user must give to the indicator iqimp(izone) the value 0 and
set the three velocity components (in m.s−1) in rcodcl(ifac,iu), rcodcl(ifac,iv)
and rcodcl(ifac,iw)

→ finally he specifies for each gas inlet type the mixing rate fment(izone) and the temperature
tkent(izone) in Kelvin

• for the “3 points” diffusion flame module:

→ the user can choose between the “oxidiser inlet” type marked out by ientox(izone)=1 and
the “fuel inlet” type marked out by ientfu(izone)=1

→ concerning the input mass flow or the input velocity, the method is the same as for the EBU
pre-mixed flame module

→ finally, the user sets the temperatures tinoxy for each oxidiser inlet and tinfue, for each
fuel inlet

Note: In the standard version, only the cases with only one oxidising inlet type and one fuel
inlet type can be treated. In particular, there must be only one input temperature for the
oxidiser (tinoxy) and one input temperature for the fuel (tinfuel).

• for the pulverised coal module:

→ the inlet faces can belong to the “primary air and pulverised coal inlet” type, marked
out by ientcp(izone)=1, or to the “secondary or tertiary air inlet” type, marked out by
ientat(izone)=1

→ in a way which is similar to the process described in the framework of the EBU module,
the user chooses for every inlet face to impose the mass flow or not (iqimp(izone)=1 or
0). If the mass flow is imposed, the user must set the air mass flow value qimpat(izone),
its direction in rcodcl(ifac,iu), rcodcl(ifac,iv) and
rcodcl(ifac,iw) and if

→ incoming air temperature timpat(izone) in Kelvin. If the velocity is imposed, he must set
rcodcl(ifac,iu),
rcodcl(ifac,iv) and rcodcl(ifac,iw).

→ if the inlet belongs to the “primary air and pluverised coal” type (ientcp(izone) = 1)

the user must also define for each coal type icha: the mass flow qimpcp(izone,icha), the
granulometric distribution distch(izone,icha,iclapc) related to each class iclacp, and
the injection temperature timpcp(izone,icha)

3.2.2 Initialisation of the options of the variables

In the case of coal combustion, time averages, chronological records and logss follow-ups can be set
in the Graphical User Interface (GUI) or in the subroutines cs user combustion. In the GUI, under
the heading “Calculation control”, additional variables appear in the list in the items “Time averages”
and “Profiles”, as well as in the item Volume solution control”, see Figure 6 and Figure 7.

In this section, “specific physics” refers to gas combustion or pulverised coal combustion.

For gas combustion or if the GUI is not used for coal combustion, the 3 subroutines cs user combustion

can be used to complete cs user parameters.f90 for the considered specific physics. These subrou-
tines are called at the calculation start. They allow to:

• activate, for the variables which are specific to the activated specific physics module, chronolog-
ical records at the probes defined in cs user parameters.f90.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 26/70

Figure 6: Calculation control - Time averages

Figure 7: Calculation control - Volume solution control

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 27/70

Concerning the main variables (velocity, pressure, etc ...) the user must still complete cs user parameters.f90

if he wants to get chronological records, printings in the log or chronological outputs. The vari-
ables which can be activated by the user for each specific physics are listed below. The solved
variables (of variable indices ivar) and the properties of indices iprop (defined at the cell iel by
cpro prop(iel) which is obtained by calling field get val s(iprop, cpro prop)) are listed
below:

→ EBU pre-mixed flame modelling:

- Solved variables

ivar = isca(iygfm) fresh gas mass fraction

ivar = isca(ifm) mixing rate

ivar = isca(ihm) enthalpy, if transported

- Properties cpro prop(iel)

iprop = itemp temperature

iprop = iym(1) fuel mass fraction

iprop = iym(2) oxidiser mass fraction

iprop = iym(3) product mass fraction

iprop = ickabs absorption coefficient, when the radiation modelling is activated

iprop = it3m and it4m “T 3” and “T 4” terms, when the radiation modelling is acti-
vated

→ rapid complete chemistry diffusion flame modelling:

everything is identical to the “EBU” case, except the fresh gas mass fraction which is
replaced by the variance of the mixing rate ivar=isca(ifp2m)

→ pulverised coal modelling with 3 combustibles:

variables shared by the two phases:

- Solved variables

ivar = isca(ihm): gas-coal mixture enthalpy

ivar = isca(immel): molar mass of the gas mixture

variables specific to the dispersed phase:

- Solved variables

ivar = isca(ixck(icla)): coke mass fraction related to the class icla

ivar = isca(ixch(icla)): reactive coal mass fraction related to the class icla

ivar = isca(inp(icla)): number of particles of the class icla per kg of air-coal
mixture

ivar = isca(ih2(icla)): mass enthalpy of the coal of class icla, if we are in
permeatic conditions

- Properties cpro prop(iel)

iprop = immel: molar mass of the gas mixture

iprop = itemp2(icla): temperature of the particles of the class icla

iprop = irom2(icla): density of the particles of the class icla

iprop = idiam2(icla): diameter of the particles of the class icla

iprop = igmdch(icla): disappearance rate of the reactive coal of the class icla

iprop = igmdv1(icla): mass transfer caused by the release of light volatiles from
the class icla

iprop = igmdv2(icla): mass transfer caused by the release of heavy volatiles
from the class icla

iprop = igmhet(icla): coke disappearance rate during the coke burnout of the
class icla

iprop = ix2(icla): solid mass fraction of the class icla

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 28/70

variables specific to the continuous phase:

- Solved variables

ivar = isca(if1m(icha)): mean value of the tracer 1 representing the light
volatiles released by the coal icha

ivar = isca(if2m(icha)): mean value of the tracer 2 representing the heavy
volatiles released by the coal icha

ivar = isca(if3m): mean value of the tracer 3 representing the carbon released
as CO during coke burnout

ivar = isca(if4pm): variance of the tracer 4 representing the air

ivar = isca(if3p2m): variance of the tracer 3

- Properties cpro prop(iel)

iprop = itemp: temperature of the gas mixture

iprop = iym1(1): mass fraction of CHX1m (light volatiles) in the gas mixture

iprop = iym1(2): mass fraction of CHX2m (heavy volatiles) in the gas mixture

iprop = iym1(3): mass fraction of CO in the gas mixture

iprop = iym1(4): mass fraction of O2 in the gas mixture

iprop = iym1(5): mass fraction of CO2 in the gas mixture

iprop = iym1(6): mass fraction of H2O in the gas mixture

iprop = iym1(7): mass fraction of N2 in the gas mixture

• set the relaxation coefficient of the density srrom, with
ρn+1 = srrom ∗ ρn + (1− srrom)ρn+1

(the default value is srrom = 0.8. At the beginning of a calculation, a sub-relaxation of 0.95 may
reduce the numerical “shocks”).

• set the dynamic viscosity diftl0. By default diftl0= 4.25 kgm−1s−1 (the dynamic diffusivity
being the ratio between the thermal conductivity λ and the mixture specific heat Cp in the
equation of enthalpy).

• set the value of the constant cebu of the Eddy Break Up model (only in cs user combustion.
By default cebu=2.5)

3.3 Heavy fuel oil combustion module

3.3.1 Initialisation of transported variables

To initialise or modify (in case of a continuation) values of transported variables and of the time step,
the standard subroutine cs user initialization is used.

Physical properties are stored using the cs field API (cell center). For instance, to obtain rom(iel),
the mean density (in kg.m−3), one must declare a ncelet array cpro rom and then call call field get val s(icrom,

cpro rom).
Physical properties (rom, viscl, cp, ...) are computed in ppphyv and are not to be modified here.

The cs user initialization-fuel.f90 example illustrates how the user may initialise quantities
related to gaseous species and droplets compositions in addition to the chosen turbulent model.

3.3.2 Boundary conditions

Boundary conditions are defined as usual on a per-face basis in cs user boundary conditions. They
may be assigned in two ways:

. for “standard” boundary conditions (inlet, free outlet, wall, symmetry): a code is defined in the
array itypfb (of dimensions equal to the number of boundary faces). This code will then be
used by a non-user subroutine to assign the conditions.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 29/70

. for “non-standard” conditions: see details given in cs user boundary conditions-fuel.f90

example.

3.4 Radiative thermal transfers in semi-transparent gray media

3.4.1 Initialisation of the radiation main parameters

The main radiation parameters can be initialise in the Graphical User Interface (GUI) or in the user
subroutine cs user radiative transfer param. In the GUI, under the heading “Thermophysical
models”, when one of the two thermal radiative transfers models is selected, see Figure ??, additional
items appear. The user is asked to choose the number of directions for angular discretisation, to define
the absorption coefficient and select if the radiative calculation are restarted or not, see Figure 8 and
Figure 10. When “Advanced options” is selected for both models Figure 9 or Figure 11 appear, the
user must fill the resolution frequency and verbosity levels. In addition, the activation of the radiative
transfer leads to the creation of an item “Surface solution control” under the heading “Calculation
control”, see Figure 12, where radiative transfer variables can be selected to appear in the output log.

Figure 8: Radiative transfers - parameters of the DO method

Figure 9: Radiative transfers - advanced parameters of the DO method

If the GUI is not used, cs user radiative transfer param is one of the two subroutine which must
be completed by the user for all calculations including radiative thermal transfers. It is called only
during the calculation initialisation. It is composed of three headings. The first one is dedicated to
the activation of the radiation module, only in the case of classic physics.
WARNING: when a calculation is ran using a specific physics module, this first heading must not be
completed. The radiation module is then activated or not, according to the parameter file related to the
considered specific physics.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 30/70

Figure 10: Radiative transfers - parameters of the P-1 model

Figure 11: Radiative transfers - advanced parameters of the P-1 model

In the second heading the basic parameters of the radiation module are indicated.
Finally, the third heading deals with the selection of the post-processing graphic outputs. The variables
to treat are splitted into two categories: the volumetric variables and those related to the boundary
faces.

For more details about the different parameters, the user may refer to the keyword list (§ 4).

3.4.2 Radiative transfers boundary conditions

These informations can be filled by the user through the Graphical User Interface (GUI) or by using
the subroutine cs user radiative transfer bcs.c (called every time step). If the interface is used,
when one of the “Radiative transfers” options is selected in Figure ??, it activates specific boundary
conditions each time a “Wall” is defined, see Figure 13. The user can then choose between 3 cases.
The parameters the user must specify are displayed for one of them in Figure 14.

When the GUI is not used, cs user radiative transfer bcs.c is needed for every calculation which
includes radiative thermal transfers. It is used to give all the necessary parameters concerning, in the
one case, the wall temperature calculation, and in the other, the coupling between the thermal scalar
(temperature or enthalpy), and the radiation module at the calculation domain boundaries. It must
be noted that the boundary conditions concerning the thermal scalar which may have been defined
in the GUI or in subroutine cs user boundary conditions will be modified by the radiation module
according to the data given in cs user radiative transfer bcs (cf. §??).
A boundary condition type stored in the array isothp is associated with each boundary face. There
are five different types:

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 31/70

Figure 12: Calculation control - Radiative transfers post-processing output

Figure 13: Boundary conditions - choice of wall thermal radiative transfers

• CS BOUNDARY RAD WALL GREY: grey of black wall, with temperature defined by main (fluid) bound-
ary conditions,

• CS BOUNDARY RAD WALL GREY EXTERIOR T: grey or black wall, calculation of the temperature by
means of a flux balance with an exterior temperature,

• CS BOUNDARY RAD WALL REFL EXTERIOR T: for a reflecting wall face, calculation of the tempera-
ture by means of a flux balance. This is equivalent to using CS BOUNDARY RAD WALL GRAY EXTERIOR T,
with zero emissivity.

• CS BOUNDARY RAD WALL GRAY COND FLUX: grey or black wall face to which a conduction flux is
imposed,

• CS BOUNDARY RAD WALL REFL COND FLUX: reflecting wall face to which a conduction flux is im-
posed, which is equivalent to impose this flux directly to the fluid.

• ifinfe: for an open boundary (inlet or outlet) or symmetry face, simulate an infinite extrusion
by applying a Neumann condition to the radiation equations,

Depending on the selected boundary condition type at every wall face, the code needs to be given some
additional information:

• CS BOUNDARY RAD WALL GRAY: the array epsp must be completed with the emissivity value (pos-
itive).

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 32/70

Figure 14: Boundary conditions - example of wall thermal radiative transfer

• CS BOUNDARY RAD WALL GREY EXTERIOR T: wall emissivity (strictly positive, in epsp), thickness
(in epap), thermal conductivity (in xlamp) and external temperature (in textp) in order to
calculate a conduction flux across the wall.

• CS BOUNDARY RAD WALL REFL EXTERIOR T: wall thickness (in epap) and thermal conductivity (in
xlamp) and an external temperature (in textp). This is equivalent to using CS BOUNDARY RAD WALL GREY EXTERIOR T
with a wall emissivity of 0, and an exchange coefficient-type boundary condition, where the ex-
change coefficient is equal to xlamp / textp.

• CS BOUNDARY RAD WALL GRAY COND FLUX: wall emissivity (in epsp) and conduction flux (in W/m2

whatever the thermal scalar, enthalpy or temperature) in the array rcodcl. The value of rcodcl
is positive when the conduction flux is directed from the inside of the fluid domain to the outside
(for instance, when the fluid heats the walls). If the conduction flux is null, the wall is adiabatic.

• CS BOUNDARY RAD WALL REFL COND FLUX: must be given: the conduction flux (in W/m2 whatever
the thermal scalar) in the array rcodcl. The value of rcodcl is positive when the conduction
flux is directed from the inside of the fluid domain to the outside (for instance, when the fluid
heats the walls). If the conduction flux is null, the wall is adiabatic. The flux received by rcodcl

is directly imposed as boundary condition for the fluid.

3.4.3 Absorption coefficient of the medium, boundary conditions for the lu-
minance and calculation of the net radiative flux

When the absorption coefficient is not constant, the subroutine cs user rad transfer absorption is
called instead at each time step. It is composed of three parts. In the first one, the user must provide
the absorption coefficient of the medium in the array CK, for each cell of the fluid mesh. By default,
the absorption coefficient of the medium is 0, which corresponds to a transparent medium.

WARNING: when a specific physics is activated, it is forbidden to give a value to the absorption coef-
ficient in this subroutine. In this case, the coefficient is either calculated automatically, or provided by
the user via a thermo-chemical parameter file (dp C3P or dp C3PSJ for gas combustion, and dp FCP
for pulverised coal combustion).

The two following parts of this subroutine concern a more advanced use of the radiation module. It
is about imposing boundary conditions to the equation of radiative transfer and net radiative flux
calculation, in coherence with the luminance at the boundary faces, when the user wants to give it a
particular value. In most cases, the given examples do not need to be modified.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 33/70

3.5 Conjugate heat transfer

3.5.1 Thermal module in a 1D wall

subroutine called at every time step

This subroutine takes into account the wall-affected thermal inertia. Some boundary faces are treated
as a solid wall with a given thickness, on which the code resolves a one-dimensional equation for the
heat conduction. The coupling between the 1D module and the fluid works in a similar way to the
coupling with the SYRTHES. By construction, the user is not able to account for the heat transfer
between different parts of the wall. A physical analysis of each problem, case by case is required in
order to evaluate the relevance of its usage by way of a report of the simple conditions (temperature,
zero-flux) or a coupling with SYRTHES.

The use of this code requires that the thermal scalar is defined as (iscalt> 0).

WARNING: The 1D thermal module is developed assuming the thermal scalar as a temperature. If
the thermal scalar is an enthalpy, the code calls the enthalpy to temperature conversion as defined by
the model defaults, or by the user in cs user physical properties for each transfer of data between
the fluid and the wall in order to convert the enthalpy to temperature and vice-versa. If the thermal
variable is the total (compressible) energy, the thermal module will not work.

3.5.2 Internal Fluid-Thermal coupling

When at least one volume zone is defined as being solid (see Figure15), scalar variables (especially
thermal scalar variables) may be solved in a fully coupled manner across the fluid and solid domains.

For this purpose, the “Internal coupling” should be activated for the desired variables in the matching
tab of the “Coupling parameters” page, as shown in figure Figure16). This section should appear when
at least one volume zone is defined as solid.

Figure 15: Solid volume zone definition

Figure 16: Conjugate heat transfer: internal coupling

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 34/70

3.5.3 Fluid-Thermal coupling with SYRTHES

Coupling code saturne with SYRTHES for conjugate heat transfer can be defined through the GUI or
the cs syrthes coupling user function. To set such a coupling in the GUI, a thermal scalar must be
selected first in the item “Thermal scalar” under the heading “Thermophysical models”. At least one
wall boundary condition must be set to “SYRTHES coupling” type, and the name of the associated
SYRTHES instance (i.e. base directory name of the associated solid case definition) be set, as shown
in, Figure17. The “Syrthes coupling” tab will then be available in the “Coupling parameters” section
(see Figure18), fo further advanced or global settings. The zones where the coupling occurs must be
defined and a projection axis can be specified in case of 2D coupling.

Figure 17: Boundary conditions - coupling with SYRTHES

Figure 18: Coupling parameters - coupling with SYRTHES

If the function cs user syrthes coupling is used, the user must specify the arguments passed to the
’cs syr coupling define’ function. These arguments are:

- syrthes name is the matching SYRTHES application name (useful only when more than one
SYRTHES and one code saturne domain are present),

- boundary criteria is the surface selection criteria,

- volume criteria is the volume selection criteria,

- projection axis: ’ ’ if the user wishes to use a 3D standard coupling, or specify ’x’, ’y’, or ’z’
as the projection axis if a 2D coupling with SYRTHES is used,

- verbosity is the verbosity level.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 35/70

- visualization is the visualization level.

Examples are provided in cs user coupling.c.

The user may also define global coupling options relative to the handling of time-stepping, by adapting
the example cs user coupling in the cs user coupling.c file. In the case of multiple couplings, these
options are global to all SYRTHES and code saturne couplings.

3.6 Particle-tracking (Lagrangian) Module

3.6.1 General information

- The particle-tracking (or Lagrangian) module enables the simulation of poly-dispersed particu-
late flows, by calculating the trajectories of individual particles, mainly characterized by their
diameter and density (if no heat nor mass transfer between particle and fluid are activated).

- The standard use of the particle-tracking module follows the Moments/PDF approach: the
instantaneous properties of the underlying flow needed to calculate the particle motion are re-
constructed from the averaged values (obtained by Reynolds-Averaged Navier-Stokes simulation)
by using stochastic processes. The statistics of interest are then obtained through Monte-Carlo
simulation.

- As a consequence, is is important to emphasize that the most important (and physically meaning-
ful) results of a particle-tracking calculation following the Moments/PDF approach are statistics.
Volume and surface statistics, steady or unsteady, can be calculated. Individual particle trajec-
tories (as 1D, EnSight-readable cases) and displacements (as EnSight-readable animations) can
also be provided, but only for illustrative purposes.

3.6.2 Activating the particle-tracking module

The activation of the particle-tracking module is performed either:

• in the Graphical User Interface (GUI): Calculation features → Thermophysical models →
Eulerian-Lagrangian multi-phase treatment → particles and droplets tracking

• or in the user function cs user lagr model.

3.6.3 Basic guidelines for standard simulations

Except for cases in which the flow conditions depend on time, it is generally recommended to perform
a first Lagrangian calculation whose aim is to reach a steady-state (i.e. to reach a time starting from
which the relevant statistics do not depend on time anymore). In a second step, a calculation restart is
done to calculate the statistics. When the single-phase flow is steady and the particle volume fraction
is low enough to neglect the particles influence on the continuous phase behaviour, it is recommended
to perform a Lagrangian calculation on a frozen field.

It is then possible to calculate steady-state volumetric statistics and to give a statistical weight higher
than 1 to the particles, in order to reduce the number of simulated (“numerical”) particles to treat
while keeping the right concentrations. Otherwise, when the continuous phase flow is steady, but the
two-coupling coupling must be taken into consideration, it is still possible to activate steady statistics.
When the continuous phase flow is unsteady, it is no longer possible to use steady statistics. To have
correct statistics at every moment in the whole calculation domain, it is imperative to have an estab-
lished particle seeding and it is recommended (when it is possible) not to impose statistical weights
different from the unity.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 36/70

Finally, when the so-called complete model is used for turbulent dispersion modelling, the user must
make sure that the volumetric statistics are directly used for the calculation of the locally undisturbed
fluid flow field.

When the thermal evolution of the particles is activated, the associated particulate scalars are always
the inclusion temperature and the locally undisturbed fluid flow temperature expressed in degrees
Celsius, whatever the thermal scalar associated with the continuous phase is (i.e. temperature or
enthalpy). If the thermal scalar associated with the continuous phase is the temperature in Kelvin,
the unit is converted automatically into Celsius. If the thermal scalar associated with the continuous
phase is the enthalpy, a temperature property or postprocessing field must be defined. In all cases, the
thermal backward coupling of the dispersed phase on the continuous phase is adapted to the thermal
scalar transported by the fluid.

3.6.4 Prescribing the main modelling parameters

Use of the GUI

In the GUI, the selection of the Lagrangian module activates the heading Particle and droplets

tracking in the tree menu. The initialization is performed in the three items included in this heading:

• Global settings. The user defines in this item the kind of Euler/Lagrange multi-phase treat-
ment, the main parameters, and the specific physics associated with the particles, see Figure 19
to Figure??.

• Statistics. The user can select the volume and boundary statistics to be post-processed.

• Output. An additional entry in the postprocessing section allows defining the output frequency
and post-processing options for particles and selecting the variables that will appear in the log.

Figure 19: Lagrangian module - View of the Global Settings page

Use of the subroutine cs user lagr model

When the GUI is not used, cs user lagr model must be completed. This function gathers in different
headings all the keywords which are necessary to configure the Lagrangian module. The different
headings refer to:

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 37/70

Figure 20: Lagrangian module - statistics

Figure 21: Lagrangian module - output

• the global configuration parameters

• the specific physical models describing the particle behaviour

• the backward coupling (influence of the dispersed phase on the continuous phase)

• the numerical parameters

• the volumetric statistics

• the boundary statistics

For more details about the different parameters, the user may refer to the keyword list (§ ??).

3.6.5 Prescribing particle boundary conditions

In the framework of the multiphase Lagrangian modelling, the management of the boundary conditions
concerns the particle behaviour when there is an interaction between its trajectory and a boundary
face. These boundary conditions may be imposed independently of those concerning the Eulerian
fluid phase (but they are of course generally consistent). The boundary condition zones are actually
redefined by the Lagrangian module (cf. §??), and a type of particle behaviour is associated with
each one. The boundary conditions related to particles can be defined in the Graphical User Interface

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 38/70

(GUI) or in the cs user lagr boundary conditions.c file. More advanced user-defined boundary
conditions can be prescribed in the cs user lagr in function from cs user lagr particle.c.

Use of the GUI

In the GUI, selecting the Lagrangian module in the activates the item Particle boundary conditions

under the heading Boundary conditions in the tree menu. Different options are available depending
on the type of standard boundary conditions selected (wall, inlet/outlet, etc...), see Figure 22.

Figure 22: Lagrangian module - boundary conditions

3.6.6 Advanced particle-tracking set-up

In this section, some information is provided for a more advanced numerical set-up of a particle-tracking
simulation.

User-defined stochastic differential equations

An adaptation in the cs user lagr sde function is required if supplementary user variables are added
to the particle state vector. This function is called at each Lagrangian sub-step.

The integration of the stochastic differential equations associated with supplementary particulate vari-
ables is done in this function.
When the integration scheme of the stochastic differential equations is a first-order (nordre = 1), this
subroutine is called once every Lagrangian iteration, if it is a second-order (nordre = 2), it is called
twice.

The solved stochastic differential equations must be written in the form:

dΦp
dt

= −Φp −Π

τφ

where Φp is the Ith supplementary user variable, τφ is a quantity homogeneous to a characteristic time,
and Π is a coefficient which may be expressed as a function of the other particulate variables.
In order to do the integration of this equation, the following parameters must be provided:

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 39/70

- τφ, equation characteristic time every particle,

- Π , equation coefficient. If the integration scheme is a first-order, then Π is expressed as a
function of the particulate variables at the previous iteration, stored in the array eptpa. If the
chosen scheme is a second-order, then Π is expressed at the first call of the function (prediction
step) as a function of the variables at the previous iteration, then at the second call (correction
step) as a function of the predicted variables.

If necessary, the thermal characteristic time τc, whose calculation can be modified by the user in the
function cs user lagr rt.

User-defined particle relaxation time

The particle relaxation time may be modified in the cs user lagr rt function according to the chosen
formulation of the drag coefficient. The particle relaxation time, modified or not by the user, is
available in the array taup.

User-defined particle thermal characteristic time

The particle thermal characteristic time may be modified in the cs user lagr rt t function according
to the chosen correlation for the calculation of the Nusselt number. This function is called at each
Lagrangian sub-step.

3.7 Compressible module

When the compressible module4 is activated, it is recommended to:

- use the option “time step variable in time and uniform in space” (idtvar=1) with a maximum
Courant number of 0.4 (coumax=0.4): these choices must be written in cs user parameters.f90

or specified with the GUI.

- keep the convective numerical schemes proposed by default (i.e.: upwind scheme).

With the compressible algorithm, the specific total energy is a new solved variable isca(ienerg)).
The temperature variable deduced from the specific total energy variable is isca(itempk) for the
compressible module.
Initialisation of the options of the variables, boundary conditions, initialisation of the variables and
management of variable physical properties can be done with the GUI. We describe below the subrou-
tines the user has to fill in without the GUI.

3.7.1 Initialisation of the options of the variables

Subroutines called at each time step.

When the GUI is not being used, the subroutines uscfx1 and uscfx2 in cs user parameters.f90

must be completed by the user.

uscfx1 allows to specify:

- ieos: equation of state (only perfect gas with a constant adiabatic coefficient, ieos=1 is available,
but the user can complete the subroutine cs cf thermo, which is not a user subroutine, to add
new equations of state).

4For more details concerning the compressible version, the user may refer to the theory guide [10] and the document
“Implantation d’un algorithme compressible dans code saturne”, Rapport EDF 2003, HI-83/03/016/A, P. Mathon, F.
Archambeau et J.-M. Hérard.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 40/70

- call field set key int(ivarfl(isca(itempk)), kivisl, ...): molecular thermal conduc-
tivity, constant (-1) or variable (0).

- iviscv: volumetric molecular viscosity, constant (0) or variable (1).

uscfx2 allows to specify:

- ivivar: molecular viscosity, constant (0) or variable (1).

- field set key double(icavr(isca(itempk)), kvisl0, ...): reference molecular thermal con-
ductivity.

- viscv0: reference volumetric molecular viscosity.

- xmasmr: molar mass of the perfect gas (ieos=1).

- icfgrp: specify if the hydrostatic equilibrium must be accounted for in the boundary conditions.

3.7.2 Management of the boundary conditions

Subroutine called at each time step.

When running the compressible module without a GUI, the cs user boundary conditions subroutine
can be used to define specific boundary conditions (see the cs user boundary conditions-compressible

file in the directory EXAMPLES for examples of boundary conditions with the compressible module).

With the compressible module, the following types of boundary condition are avaliable:

- Inlet/outlet for which velocity and two thermodynamics variables are known.

- Subsonic inlet with imposed total pressure and total energy.

- Subsonic outlet with imposed static pressure.

- Supersonic outlet.

- Wall (adiabatic or not).

- Symmetry.

It is advised to only use these predefined boundary conditions type for the compressible module.

3.7.3 Initialisation of the variables

Subroutine called only at the initialisation of the calculation

When the GUI is not used, the subroutine cs user initialization is used initialize the velocity,
turbulence and passive scalars (see the cs user initialization-compressible file in the directory
EXAMPLES for examples of initialisations with the compressible module). Concerning pressure, density,
temperature and specific total energy, only 2 variables out of these 4 are independent. The user may
then initialise the desired variable pair (apart from temperature-energy) and the two other variables
will be calculated automatically by giving the right value to the variable ithvar used for the call to
the cs cf thermo routine.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 41/70

3.7.4 Management of variable physical properties

Subroutine called at each time step.

Without the GUI, all of the laws governing the physical properties of the fluid (molecular viscosity,
molecular volumetric viscosity, molecular thermal conductivity and molecular diffusivity of the user-
defined scalars) can be specified in the subroutine usphyv of the cs user physical properties file,
which is then called at each time step. This subroutine replaces and is similar to usphyv.

The user should check that the defined laws are valid for the whole variation range of the variables.
Moreover, as only the perfect gas with a constant adiabatic coefficient equation of state is available,
it is not advised to give a law for the isobaric specific heat without modifying the equation of state in
the subroutine cs cf thermo which is not a user subroutine.

3.8 Management of the electric arcs module

3.8.1 Activating the electric arcs module

The electric arcs module is activated either:

• in the Graphical User Interface (GUI): Calculation features → Electrical models

• or in the user subroutine usppmo, by setting the ielarc or ieljou parameter to a non-null value.

3.8.2 Initialisation of the variables

Subroutine called only at initialisation of the calculation

The subroutine cs user initialization allows the user to initialise some of the specific physics
variables prompted via usppmo. It is called only during the initialisation of the calculation. As
usual,the user has access to many geometric variables so that the zones can be treated separately if
needed.

The values of potential and its constituents are initialised if required.

It should be noted that the enthalpy is relevant.

- For the electric arcs module, the enthalpy value is taken from the temperature of reference t0

(given in cs user parameters.c) from the temperature-enthalpy tables supplied in the data file
dp ELE. The user must not intervene here.

- For the Joule effect module, the value of enthalpy must be specified by the user. Examples
of temperature to enthalpy conversion are given in cs user physical properties.c). If not
defined, a simple default law is used (H = CpT).

3.8.3 Variable physical properties

All the laws of the variation of physical data of the fluid are written (when necessary) in the subroutine
cs user physical properties. It is called at each time step.

WARNING: For the electric module, it is here that all the physical variables are defined (including the
relative cells and the eventual user scalars): cs user physical properties is not used.

The user should ensure that the defined variation laws are valid for the whole range of variables.
Particular care should be taken with non-linear laws (for example, a 3rd degree polynomial law giving
negative values of density)

WARNING: In the electric module, all of the physical properties are considered as variables and are
therefore stored using the cs field API. cp0, viscls0 and viscl0 are not used

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 42/70

For the Joule effect, the user is required to supply the physical properties in the subroutine. Examples
are given which are to be adapted by the user. If the temperature is to be determined to calculate
the physical properties, the solved variable, enthalpy must be deduced. The preferred temperature-
enthalpy law should be defined (a general example is provided in (cs user physical properties),
and can be used for the initialisation of the variables in (cs user initialization)). For the electric
arcs module, the physical properties are interpolated from the data file dp ELE supplied by the user.
Modifications are generally not necessary.

3.8.4 Boundary conditions

For the electric module,each boundary face in cs user boundary conditions should be associated
with a izone number 5(the color icoul for example) in order to group together all the boundary faces
of the same type. In the cs user boundary conditions report, the main change from the users point
of view concerns the specification of the boundary conditions of the potential, which isn’t implied by
default. The Dirichlet and Neumann conditions must be imposed explicitly using icodcl and rcodcl

(as would be done for the classical scalar).

Furthermore, if one wishes to slow down the power dissipation (Joule effect module) or the current
(electric arcs module) from the imposed values (puismp and couimp respectively), they can be changed
by the potential scalar as shown below:

- For the electric arcs, the imposed potential difference can be a fixed variable: for example, the
cathode can be fixed at 0 and the potential at the anode contains the variable dpot. This variable
is initialised in in cs user parameters.90 by an estimated potential difference. If ielcor=1
(see cs user parameters.f90), dpot is updated automatically during the calculation to obtain
the required current.

- For the Joule effect module, dpot is again used with the same signification as in the electric
arcs module. If dpot is not wanted in the setting of the boundary conditions, the variable
coejou can be used. coejou is the coefficient by which the potential difference is multiplied
to obtain the desired power dissipation. By default this begins at 1 and is updated auto-
matically. If ielcor=1 (see cs user parameters.f90), multiply the imposed potentials in
cs user boundary conditions by coejou at each time step to achieve the desired power dissi-
pation.

WARNING: In the case of alternating current, attention should be paid to the values of potential
imposed at the limits: the variable named ”real potential” represents an affective value if the current
is in single phase, and a ”real part” if not.

- For the Joule studies, a complex potential is sometimes needed (ippmod(ieljou)=2): this is
the case in particular where the current has three phases. To have access to the phase of the
potential, and not just to its amplitude, the two variables must be deleted: in code saturne, there
are two arrays specified for this role, the real part and the imaginary part of the potential. For
use in the code, these variables are named “real potential” and “imaginary potential”. For an
alternative sinusoidal potential Pp, the maximum value is noted as Ppmax, the phase is noted as
φ, the real potential and the imaginary potential are respectively Ppmax cosφ and Ppmax sinφ.

- For the Joule studies in which one does not have access to the phases, the real potential (imaginary
part =0) will suffice (ippmod(ieljou)=1): this is obviously the case with continuous current,
but also with single phase alternative current. In code saturne there is only 1 variable for the
potential, called ”real potential”. Pay attention to the fact that in alternate current, the ”real
potential” represents a effective value of potential , 1√

2
Ppmax (in continuous current there is no

such ambiguity).

5izone must be less than the maximum value allowed by the code, nozzppm. This is fixed at 2000 in ppvar and cannot
be modified.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 43/70

Additions for transformers

The following additional boundary conditions must be defined for tansformers:

• the intensity at each electrode

• the voltage on each terminal of transformers. To achieve it, the intensity, the rvoltage at each
termin, the Rvoltage, and the total intensity of the transformer are calculated.

Finally, a test is performed to check if the offset is zero or if a boundary face is in contact with the
ground.

3.8.5 Initialisation of the variable options

The subroutine cs user parameters (in cs user parameters.c) is called at each time step. It allows:

• to give the coefficient of relaxation of the density srrom:
ρn+1 = srrom ∗ ρn + (1− srrom)ρn

(for the electric arcs, the sub-relaxation is taken into account during the 2nd time step;)

• to indicate if the data will be fixed in the power dissipation or in the current, done in ielcor.

• target either the current fixed as couimp (electric arcs module) or the power dissipation puism

(Joule module effect).

• to fix the initial value of potential difference dpot, the for the calculations with a single fixed
parameter as couimp or puism.

• to define type of scaling model for electric arcs modrec. If scaling by a resetting plane is choosen
then idreca defines the current density component and crit reca the plane used for resetting
of electromagnetic variables.

3.9 code saturne-code saturne coupling

Subroutine called once during the calculation initialisation.

The user function cs user saturne coupling (in cs user coupling.c is used to couple code saturne
with itself. It is used for turbo-machine applications for instance, the first code saturne managing the
fluid around the rotor and the other the fluid around the stator. In the case of a coupling between
two code saturne instances, first argument saturne name of the function ’cs sat coupling define’ is
ignored. In case of multiple couplings, a coupling will be matched with available code saturne instances
based on that argument, which should match the directory name for the given coupled domain..
The arguments of ’cs sat coupling define’ are:

- saturne name: the matching code saturne application name,

- volume sup criteria: the cell selection criteria for support,

- boundary sup criteria: the boundary face selection criteria for support (not functional),

- volume cpl criteria: the cell selection criteria for coupled cells,

- boundary cpl criteria: the boundary face selection criteria for coupled faces,

- verbosity: the verbosity level.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 44/70

3.10 Fluid-Structure external coupling

Subroutine called only once

The subroutine usaste belongs to the module dedicated to external Fluid-Structure coupling with
Code Aster. Here one defines the boundary faces coupled with Code Aster and the fluid forces com-
ponents which are given to structural calculation. When using external coupling with Code Aster,
structure numbers necessarily need to be negative; the references of coupled faces being i.e. -1, -2, etc.
The subroutine performs the following operations:

- ’getfbr’ is called to get a list of elements matching a geometrical criterion or reference number
then a structure number (negative value) is associated to these elements.

- the value passed to asddlf, for user-chosen component, for every negative structure number,
defines the movement imposed to the external structure.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 45/70

3.11 ALE module

3.11.1 Initialisation of the options

This initialisation can be performed in the Graphical User Interface (GUI) or in the subroutines
usipph and usstr1. Firstly, when the “Mobile mesh” is selected in GUI under the “Calculation
features” heading, additional options are displayed. The user must choose the type of mesh viscosity
and describe its spatial distribution, see Figure 23. The following paragraphs are relevant if the GUI

Figure 23: Thermophysical models - mobile mesh (ALE method)

is not used.

Subroutine usipph

Subroutine called at the beginning. This subroutine completes cs user parameters.f90.

usipph allows setting options for the ALE module, and in particular to activate the ALE module
(iale=1).

Subroutine usstr1

This subroutine reads in cs user fluid structure interaction.f90. It allows to specify the follow-
ing pieces of information for the structure module:

- the index of the structure, (idfstr(ifac) where ifac is the index of the face). Then the total
number of structures nbstru is automatically computed by the code. Be careful, the value must
belong to 1, ..., nbstru.

- the initial value of displacement, velocity and acceleration (xstr0, xstreq and vstr0).

Below is a list of the different variables that might be modified:

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 46/70

• idfstr(ifac)

the index of the structure, (idfstr(ifac) where ifac is the index of the face), 0 if the face is
not coupled to any structure.

• xstr0(i,k)

initial position of a structure, where i is the dimension of space and k the index of the structure

• xstreq(i,k)

equilibrum position of a structure, where i is the dimension of space and k the index of the
structure

• vstr0(i,k)

initial velicity of a structure, where i is the dimension of space and k the index of the structure

3.11.2 Mesh velocity boundary conditions

These boundary conditions can be managed through the Graphical User Interface (GUI) or using the
subroutine usalcl (called at each time step). With the GUI, when the item “Mobile mesh” is activated
the item “Fluid structure interaction” appears under the heading “Boundary conditions”. Two types
of fluid-structure coupling are offered. The first one is internal, using a simplified structure model and
the second is external with Code Aster, see Figure 24 and Figure 25.

Subroutine usalcl

When the GUI is not used, the use of usalcl is mandatory to run a calculation using the ale module
just as it is in cs user parameters.f90. It is used the same way as cs user boundary conditions

in the framework of standard calculations, that is to say a loop on the boundary faces marked out
by their colour (or more generally by a property of their family), where the type of mesh velocity
boundary condition is definied for each variable.

The main numerical variables are described below.

ialtyb(nfabor) [ia]: In the ale module, the user defines the mesh velocity from the colour of the
boundary faces, or more generally from their properties (colours, groups, ...), from the bound-
ary conditions defined in cs user boundary conditions, or even from their coordinates. To
do so, the array ialtyb(nfabor) gives for each face ifac the mesh velocity boundary con-
dition types marked out by the key words ivimpo, igliss, ibfixe or ifresf..

• If ialtyb(ifac) = ivimpo: imposed velocity.

→ In the cases where all the nodes of a face have a imposed displacement, it is not necessary
to fill the tables with mesh velocity boundary conditions for this face, these will be erased.
In the other case, the value of the Dirichlet must be given in rcodcl(ifac,ivar,1) for
every value of ivar (iuma, ivma and iwma). The other boxes of rcodcl and icodcl are
completed automatically.

The tangential mesh velocity is taken like a tape speed under the boundary conditions of
wall for the fluid, except if wall fluid velocity was specified by the user in the interface or
cs user boundary conditions (in which case it is this speed which is considered).

• if ialtyb(ifac) = ibfixe: fixed wall

→ the velocity is null.

• if ialtyb(ifac) = igliss: sliding wall

→ symmetry boundary condition on the mesh velocity vector, which means a homogeneous
Neumann on the tangential mesh velocity and a zero Dirichlet on the normal mesh velocity.

• if ialtyb(ifac) = ifresf: free-surface

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 47/70

→ an imposed mesh velocity such that the fluid mass flux is equal to the mesh displacement
in order to mimic the free-surface automatically. Note that the boundary condition on the
fluid velocity must be set separately (homogeneous Neumann condition for instance).

3.11.3 Modification of the mesh viscosity

The user subroutine cs user physical properties can be used along the ALE (Arbitrary Lagrangian
Eulerian Method) module, and allows modifying the mesh viscosity. It is called before the time loop,
and before reading restart files (so the mesh is always in its initial position at this stage). The user can
modify mesh viscosity values to prevent cells and nodes from huge displacements in awkward areas,
such as boundary layer for example.

Note that for more complex settings, the mesh viscosity could be modified in cs user initialization

or cs user extra operations. The matching field’s name is mesh viscosity.

3.11.4 Fluid - Structure internal coupling

In the subroutine cs user fluid structure interaction the user provides the parameters of two
other subroutines. usstr1 is called at the beginning of the calculation. It is used to define and
initialise the internal structures where fluid-Structure coupling occurs. For each boundary face ifac,
idfstr(ifac) is the index of the structure the face belongs to (if idfstr(ifac) = 0, the face ifac

doesn’t belong to any structure). When using internal coupling, structure index necessarily must be
strictly positive and smaller than the number of structures. The number of ”internal” structures is
automatically defined with the maximum value of the idfstr table, meaning that internal structure
numbers must be defined sequentially with positive values, beginning with integer value ’1’.

For each internal structure the user can define:

- an initial velocity vstr0

- an initial displacement xstr0 (i.e. xstr0 is the value of the displacement xstr compared to the
initial mesh at time t = 0)

- a displacement compared to equilibrium xstreq (i.e. xstreq is the initial displacement of the
internal structure compared to its position at equilibrium; at each time step t and for a displace-
ment xstr(t), the associated internal structure will undergo a force −k ∗ (t+XSTREQ) due to
the spring).

xstr0 and vstr0 are initialised with the value 0. When starting a calculation using ALE, or re-starting a
calculation with ALE, based on a first calculation without ALE, an initial iteration 0 is automatically
performed in order to take initial arrays xstr0, vstr0 and xstreq into account. In any other case, add
the following expression ’italin=1’ in subroutine usipsu, so that the code can deal with the arrays xstr0,
vstr0 and xstreq.

When ihistr is set to 1, the code writes in the output the history of the displacement, of the structural
velocity, of the structural acceleration and of the fluid force. The value of structural history output
step is the same as the one for standard variables nthist.

The second subroutine, usstr2, is called at each iteration. One defines in this subroutine structural pa-
rameters (considered as potentially time dependent): i.e., mass m xmstru, friction coefficients c xcstru,
and stiffness k xkstru. forstr array gives fluid stresses acting on each internal structure. Moreover it is
also possible to take external forces (gravity for example) into account.

. the xstr array indicates the displacement of the structure compared to its position in the initial
mesh,

. the xstr0 array gives the displacement of the structures in the initial mesh compared to structural
equilibrium,

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 48/70

. the vstr array stands for structural velocity.

xstr, xstr0 and vstr are DATA tables that can be used to define the Mass, Friction and Stiffness arays.
These are not to be modified.

The 3D structural equation that is solved is the following one:

m.∂ttx+ c.∂tx+ k.
(
x+ x0

)
= f, (4)

where x stands for the structural displacement compared to initial mesh position xstr, x0 represents
the displacement of the structure in initial mesh compared to equilibrium. Note that m,c, and k are
3x3 matrices. Equation (4) is solved using a Newmark HHT algorithm. Note that the time step used
to solve this equation, dtstr, can be different from the one of fluid calculations. The user is free to
define dtstr array. At the beginning of the calculation dtstr is initialised to the value of dtcel (fluid
time step).

3.12 Management of the structure property

The use of usstr2 is mandatory to run a calculation using the ALE module with a structure module.
It is called at each time step.

For each structure, the system that will be solved is:

M.x
′′

+ C.x
′
+K.(x− x0) = 0 (5)

where

- M is the mass structure (xmstru).

- C is the damping coefficient of the structure (xcstru).

- K is the spring constant or force constant of the structure (xkstru).

- x0 is the initial position.

Below is a list of the different variables that might be modified:

• xmstru(i,j,k)
mass matrix of the structure, where i,j is the array of mass structure and k the index of the
structure.

• xcstru(i,j,k)
damping matrix coefficient of the structure, where i,j is the array of damping coefficient and k

the index of the structure.

• xkstru(i,j,k)

spring matrix constant of the structure, where i,j is the array of spring constant and k the index
of the structure.

• forstr(i,k)

force vector of the structure, where i is the force vector and k the index of the structure.

3.13 Management of the atmospheric module

This section describes how to set a calculation using the atmospheric module of code saturne. Each
paragraph describes a step of the data setting process.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 49/70

3.13.1 Directory structure

The flowchart (Figure 26) recalls the directory structure of a study generated by code saturne (see also
??). When using the atmospheric module, the structure is identical but a file called meteo may be
added to the data settings in order to provide vertical profiles of the main variables. This file should
be put in the DATA directory. For more details about the meteo file, see § 3.13.5).

3.13.2 The atmospheric mesh features

An atmospheric mesh has the following specific features:

• The boundary located at the top of the domain should be a plane. So, horizontal wind speed at
a given altitude can be prescribed at the top face as an inlet boundary.

• Cells may have very different sizes, from very small (near ground or buildings) to very large (near
the top of domain or far from zone of interest).

• Vertical resolution: from tiny cells (e.g. ∆z = 1 m) near the ground to a few hundreds of meters
at the top.

• Horizontal resolution: from a few meters to hundreds of meters.

• The length ratio between two adjacent cells (in each direction) should preferably be between 0.7
and 1.3.

• The z axis represents the vertical axis.

A topography map can be used to generate a mesh. In this case, the preprocessor mode is particularly
useful to check the quality of the mesh (run type Mesh quality criteria).

3.13.3 Atmospheric flow model and steady/unsteady algorithm

The Graphical User Interface (GUI) may be used to enable the atmospheric flow module and set
up the following calculation parameters in the Thermophysical models-Calculation features page
(see Figure 27):

3.13.3.1 The atmospheric flow model

The user can choose one of the following atmospheric flow models:

• Constant density: To simulate neutral atmosphere.

• Dry atmosphere: To simulate dry, thermally-stratified atmospheric flows (enables Potential

temperature as thermal model).

• Humid atmosphere: To simulate thermally stratified atmospheric flows (air-water mixture)
with phase changes (enables Liquid potential temperature as thermal model). The model is
described in Bouzereau [11].

3.13.3.2 The time algorithm

• Steady flow algorithm: is the one usually set. It sets a time step variable in space and time. It
has to be selected if constant boundary conditions are used.

• Unsteady flow algorithm has to be selected for time varying boundary conditions (the time step
can then be variable in time or constant).

Table Table 3.13.4 can help to choose the right parameters depending on the type of atmospheric flow.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 50/70

3.13.3.3 Warnings

The following points have to be considered when setting the parameters described above:

• The potential temperature thermal model and the liquid potential temperature one (see the
paragraph “Atmospheric main variables” for the definition) requires that the vertical component
of the gravity is set to gz = −9.81m.s−2 (gx = gy = 0m.s−2), otherwise pressure and density
won’t be correctly computed.

• As well, the use of scalar with drift for atmospheric dispersion requires the gravity to be set to
gz = −9.81 (gx = gy = 0m.s−2), even if the density is constant.

3.13.4 Physical properties

The specific heat value has to be set to the atmospheric value Cp = 1005J/kg/K.

Parameters Constant
density

Dry atmo-
sphere

Humid atmo-
sphere

Explanation

pressure boundary
condition

Neumann first
order

Extrapolation Extrapolation In case of Extrapola-
tion, the pressure gra-
dient is assumed (and
set) constant, whereas
in case of Neumann
first order, the pres-
sure gradient is as-
sumed (and set) to
zero.

Improved pressure
interpolation in
stratified flows

no yes yes If yes, exact balance
between the hydro-
static part of the
pressure gradient and
the gravity term ρg is
numerically ensured.

Gravity (gravity
is assumed aligned
with the z-axis)

gz = 0 or gz =
−9.81m.s−2

(the latter is
useful for scalar
with drift)

gz =
−9.81m.s−2

gz = −9.81m.s−2

Thermal variable no potential tem-
perature

liquid potential
temperature

Others variables no no total water con-
tent, droplets
number

Table 4: List of parameters

3.13.5 Boundary and initial conditions

The meteo file can be used to define initial conditions for the different fields and to set up the inlet
boundary conditions. For the velocity field, code saturne can automatically detect if the boundary
is an inlet boundary or an outflow boundary, according to the wind speed components given in the
meteo file with respect to the boundary face orientation. This is often used for the lateral boundaries
of the atmospheric domain, especially if the profile is evolving in time. In the case of inlet flow, the

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 51/70

data given in the meteo file will be used as the input data (Dirichlet boundary condition) for velocity,
temperature, humidity and turbulent variables. In the case of outflow, a Neumann boundary condition
is automatically imposed (except for the pressure). The unit of temperature in the meteo file is the
degree Celsius whereas the unit in the GUI is the kelvin.

To be taken into account, the meteo file has to be selected in the GUI (Atmospheric flows page, see
Figure 29) and the check box on the side ticked. This file gives the profiles of prognostic atmospheric
variables containing one or a list of time stamps. The file has to be put in the DATA directory.
An example of file meteo is given in the directory DATA/REFERENCE/. The file format has to be
strictly respected. The horizontal coordinates are not used at the present time (except when boundary
conditions are based on several meteorological vertical profiles) and the vertical profiles are defined
with the altitude above sea level. The highest altitude of the profile should be above the top of the
simulation domain and the lowest altitude of the profile should be below or equal to the lowest level
of the simulation domain. The line at the end of the meteo file should not be empty.

If the boundary conditions are variable in time, the vertical profiles for the different time stamps have
to be written sequentially in the meteo file.

You can also set the profiles of atmospheric variables directly in the GUI. The following boundary
conditions can be selected in the GUI:

• Inlet/Outlet is automatically calculated for lateral boundaries (e.g. North, West. . .) of the
computational domain (see Figure 30).

• Inlet for the top of the domain (see Figure 31).

• Rough wall for building walls (see Figure 32) or for the ground (see Figure 33). The user has
to enter the roughness length. In case of variable roughness length, the user has to provide the
land use data and the association between the roughness length values and land use categories.

Remark: If a meteorological file is given, it is used by default to initialize the variables. If a
meteorological file is not given, the user can use the standard code saturne initial and boundary
conditions set up but has to be aware that even small inconsistencies can create very large buoyancy
forces and spurious circulations.

3.13.5.1 Boundary conditions based on several meteorological vertical pro-
files

In some cases, especially when outputs of a mesoscale model are used, you need to build input boundary
conditions from several meteorological vertical wind profiles. Cressman interpolation is then used to
create the boundary conditions. The following files need to be put in the DATA directory:

• All meteo files giving the different vertical profiles of prognostic variables (wind, temperature,
turbulent kinetic energy and dissipation).

• A file called imbrication files list.txt which is a list of the meteo files used.

• A separate meteo file which is used for the initial conditions and to impose inlet boundary condi-
tions for the variables for which Cressman interpolation is not used (for example: temperature,
turbulent kinetic energy). This file must follow the rules indicated previously.

The following files should be put in the SRC directory:

• The user source file cs user parameters.f90. In this file, set the cressman flag of each variable,
for which the Cressman interpolation should be enabled, to .true..

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 52/70

3.13.6 User subroutines

The user subroutines are used when the graphical user interface is not sufficient to set up the calculation.
We give some examples of user file for atmospheric application:

• cs user source terms.f90: to add a source term in the prognostic equations for forest canopy
modelling, wind turbine wake modelling... See the associated doxygen documentation for exam-
ples of use of cs user source terms.f90.

• cs user parameters.f90: to activate the Cressman interpolation. For example, it is used to
impose inhomogeneous boundary conditions. See the associated doxygen documentation for
examples of use of cs user parameters.f90.

• cs user extra operations-extract.f90: to generate vertical profiles for post processing. See
the associated doxygen documentation for examples of use of cs user extra operations.f90.

• cs user boundary conditions-atmospheric.f90: show how to set up the boundary conditions
and to put a heterogeneous roughness length... See the associated doxygen documentation for
examples of use of cs user boundary conditions.f90.

Remark: If the computation is set without the GUI, other user subroutines such as the following
have to be used:

• cs user initialization-atmospheric.f90: allows to initialize or modify (in case of a restarted
calculation) the calculation variables and the values of the time step. See the associated doxygen

documentation for examples of use of cs user initialization.f90.

• cs user boundary conditions-atmospheric.f90: allows to define all the boundary conditions.
For each type of boundary condition, faces should be grouped as physical zones characterized
by an arbitrary number izone chosen by the user. If a boundary condition is retrieved from a
meteorological profile, the variable iprofm(izone) of the zone has to be set to 1. The vertical
profiles of atmospheric variables can be described in this file.

Examples are available in the directory SRC/EXAMPLE.

3.13.7 Physical models

3.13.7.1 Atmospheric dispersion of pollutants

To simulate the atmospheric dispersion of pollutant, one first need to define the source(s) term(s). That
is to say the location i.e. the list of cells or boundary faces, the total air flow, the emitted mass fraction
of pollutant, the emission temperature and the speed with the associated turbulent parameters. The
mass fraction of pollutant is simulated through a user added scalar that could be a ‘scalar with drift’
if wanted (aerosols for example).

The simulations can be done using 3 different methods:

1. Using a mass source term, that is added in the Navier-Stokes equations using the cs user mass source terms.f90

user subroutine.

2. Prescribing a boundary condition code “total imposed mass flux“ for some boundary faces using
the cs user boundary conditions.f90 user subroutine.

3. Using a scalar source term. In this case, the air inflow is not taken into account. The user has to
add an explicit part to the equations for the scalar through the cs user source terms.f90 file.
This is done by selecting the cells and adding the source term crvexp (cells) which equals to
the air flux multiplied by the mass fraction, while the implicit part crvimp is set to zero.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 53/70

The first method is recommended, but one must take care that each source influences the dispersion
of the others, which is physically realistic. So if the impact of several sources has to be analyzed
independently it has first to be verified that these influences are negligible or as many simulations as
there are sources have to be run.

With the second method, the same problem of sources interactions appears, and moreover standard
Dirichlet conditions should not be used (use itypfb=i convective inlet and icodcl=13 instead) as
the exact emission rate cannot be prescribed because the diffusive part (usually negligible) cannot be
quantified. Additionally, it requires that the boundary faces of the emission are explicitly represented
in the mesh.

Finally the third method does not take into account the jet effect of the emission and so must be used
only if it is sure that the emission does not modify the flow.

Whatever solution is chosen, the mass conservation should be verified by using for example the
cs user extra operations-scalar balance by zone.f90 file.

3.13.7.2 Soil/atmosphere interaction model

This model is based on the force restore model (Deardorff [13]). It takes into account heat and
humidity exchanges between the ground and the atmosphere at daily scale and the time evolution
of ground surface temperature and humidity. Surface temperature is calculated with a prognostic
equation whereas a 2-layers model is used to compute surface humidity.

The parameter iatsoil in the file atini0.f90 needs to be equal to one to activate the model. Then,
the source file solvar.f90 is used.

Three variables need to be initialized in the file atini0.f90: deep soil temperature, surface tempera-
ture and humidity.

The user needs to give the values of the model constants in the file solcat.f90: roughness length,
albedo, emissivity...

In case of a 3D simulation domain, land use data has to be provided for the domain. Values of model
constants for the land use categories have also to be provided.

3.13.7.3 Radiative model (1D)

The 1D-radiative model calculates the radiative exchange between different atmospheric layers and the
surface radiative fluxes.

The radiative exchange is computed separately for two wave lengths intervals

• Calculation in the infrared spectral domain (file rayir.f90)

• Calculation in the spectral range of solar radiation (file rayso.f90)

This 1D-radiative model is needed if the soil/atmosphere interaction model is activated.

This model is activated if the parameter iatra1 is equal to one in the file cs users parameters.f90.

3.13.8 Atmospheric main variables

For more details on the topic of atmospheric boundary layers, see Stull [12].

• Definition of the potential temperature:

θ = T

(
P

Pr

)−Rd
Cp

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 54/70

• Definition of liquid potential temperature:

θl = θ

(
1− L

CpT
ql

)
• Definition of virtual temperature:

Tv = (1 + 0.61q)T

• Gas law:

P = ρ
R

Md
(1 + 0, 61q)T

with R = RdMd.

• Hydrostatic state:
∂P

∂z
= −ρg

Constant name Symbol Values Unit
Gravity acceleration at sea level g 9.81 m.s−2

Effective Molecular Mass for dry air Md 28.97 kg.kmol−1

Standard reference pressure Pr 105 Pa
Universal gas constant R 8.3143 J.K−1.mol
Gas constant for dry air Rd 287 J.kg−1.K−1

Table 5: Constant name

Variable name Symbol
Specific heat capacity of dry air Cp
Atmospheric pressure P
Specific humidity q
Specific content for liquid water ql
Temperature T
Virtual temperature Tv
Potential temperature θ
Liquid potential temperature θl
Latent heat of vaporization L
Density ρ
Altitude z

Table 6: Variable name

3.13.9 Recommendations

This part is a list of recommendations for atmospheric numerical simulations.

• Enough probes at different vertical levels in the domain should be used to check the convergence
of the calculation.

• An inflow boundary condition at the top level of the domain should be set (symmetry and
automatic inlet/outlet are not appropriate).

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 55/70

• A Courant number too small or too big has to be avoided (see code saturne Best Practice
Guidelines). That is the reason why the option variable time step in space and in time

is recommended for steady simulations when there are large differences of cell size inside the
domain (which is generally the case for atmospheric simulations). With this option, it can be
necessary to change the reference time step and the time step maximal increase (by default, the
time step increase rate is 10%).

In some cases, results can be improved with the following modifications:

• In some case, the turbulent eddy viscosity can drop to unrealistically low values (especially with
k − ε model in stable atmospheric condition). In those cases, it is suggested to put an artificial
molecular viscosity around 0.1m2.s−1.

• If the main direction of wind is parallel to the boundary of your computing domain, try to set
symmetry boundary conditions for the lateral boundaries to avoid inflow and outflow on the
same boundary zone (side of your domain). Another possibility is to use a cylindrical mesh.

• To avoid inflow and outflow on the same boundary zone (side of your domain), avoid the case
of vertical profile in the input data meteo file with changes of the sign of velocity of wind (Vx
or/and Vy).

3.14 Turbomachinery computations

3.14.1 Introduction

Two classical models are available in code saturne for rotor/stator interactions modelling in turboma-
chinery computations: the steady approach which is based on the so-called Frozen Rotor modelling
and the transient rotor/stator approach which is based on a sliding mesh technique.

Warning: This section describes these functionalities based on a single code saturne computation. An
alternative rotor/stator coupling based on coupling of boundary conditions is also possible (and only
briefly described in this section) but it is not recommended.

3.14.2 Meshing reccomendations

Periodicity The rotational periodicity treatment is possible only in Frozen Rotor. However, the
interface plane between rotor and stator must match in the azimutal θ direction:

θrotor
min (z) = θstator

min (z), θrotor
max (z) = θstator

max (z)

for all z through the rotation axis direction.

Rotor/stator interface

• Unsteady rotor/stator : in the input mesh(es), the interface between rotor and stator domains
has to be composed of boundary faces. Then the interface boundary faces are joined during the
computation and become internal faces, as is usual for mesh joining in the preprocessing stage.
A simple way to ensure joining is not done prematurely is to provide separated meshes for each
rotor or stator domain.

• Frozen Rotor : the interface can be composed of boundary faces (in which case the interface
boundary faces are joined at the beginning of the computation) or of internal faces.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 56/70

Meshing of the interface region As mentioned above, when a rotor/stator interface boundary
exists (in particular for the unsteady rotor/stator model), boundary faces are joined by the solver
during the computation, based on the current rotor position. It is thus important to be aware that
the success of a joining operation is strongly dependant on the quality of the mesh at the interface.
More precisely, the refinement must be as similar as possible at both sides of the interface. Moreover,
it is reminded that the tolerance parameter of a joining is a fraction of the shortest edge linked with a
vertex of a joined face. Consequently, cells with high aspect ratios where the refinement in the azimutal
θ direction is much coarser than those in one of the two others can also lead to a joining failure. In
particular, the user should be careful to avoid elongated viscous layer type cells in curved areas such
as a rotor-stator interface.

If the meshes at both sides of the interface are very different such that the joining fails, advanced joining
parameters are available. However, modifying the mesh is more likely to succeed. The introduction of a
somekind of buffer cells layer on both sides of the interface should be very valuable. Ideally, each of the
two layers should have the same refinement and a constant azimutal step (this latter recommandation
is relevant only for unsteady rotor/stator model).

Alternative rotor/stator coupling If the meshes at both sides of the interface are very different
and can not be modified, a fallback solution is to use the rotor/stator model based on the boundary
conditions coupling.

Warning: Contrarily to the mesh joining approach, the boundary conditions coupling approach is not
fully conservative.

3.14.3 Turbomachinery dedicated postprocessing functions

Useful postprocessing functions relative to the machinery characteristics are available: postprocessing
of the couple on the rotor walls and postprocessing of the head generated by the machinery.

3.14.4 Data setting, keywords and examples

Data setting, keywords and examples for turbomachinery computations (mesh joining or boundary
conditions coupling), are provided in the dedicated doxygen documentation.

3.15 Cavitation module

The cavitation module is based on an homogeneous mixture model. The physical properties (density
and dynamic viscosity) of the mixture depends on a resolved void fraction and constant reference
properties of the liquid phase and the gas phase.

For a description of the user management of the cavitation module, please refer to the dedicated
doxygen documentation.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 57/70

Figure 24: Boundary conditions - internal coupling

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 58/70

Figure 25: Boundary conditions - external coupling

Figure 26: Organization of a study (specific files of atmospheric version in bold type)

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 59/70

Figure 27: Selection of atmospheric model

Figure 28: Selection of steady/unsteady flow algorithm

Figure 29: Selection of the meteo file

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 60/70

Figure 30: Selection of automatic inlet/ outlet for boundary conditions

Figure 31: Selection of the boundary condition for the top of the domain

Figure 32: Selection of the boundary condition for building walls

Figure 33: Selection of the boundary condition for the ground

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 61/70

4 Keyword list
The keywords are classified under relevant headings. For each keyword of code saturne Kernel, the
following informations are given:

Variable name Type Allowed values [Default] O/C Level
Description
Potential dependences

• Variable name: Name of the variable containing the keyword.

• Type: a (Array), i (Integer), r (Real number), c (Character string).

• Allowed values: list or range of allowed values.

• Default: value defined by the code before any user modification (every keyword has one). In
some cases, a non-allowed value is given (generally −999 or −1012), forcing the user to specify a
value. If he does not do it, the code may:

- automatically use a recommended value (for example, automatic choice of the variables for
which chronological records will be generated).

- stop, if the keyword is essential.

• O/C: Optional/Compulsory

- O: optional keyword, whose default value may be enough.

- C: keyword which must imperatively be specified.

• Level: L1, L2 or L3

- L1 (level 1): the users will have to modify it in the framework of standard applications.
The L1 keywords are written in bold.

- L2 (level 2): the users may have to modify it in the framework of advanced applications.
The L2 keywords are all optional.

- L3 (level 3): the developers may have to modify it; it keeps its default value in any other
case. The L3 keywords are all optional.

• Description: keyword description, with its potential dependences.

The L1 keywords can be modified through the Graphical Use Interface or in the cs user parameters.c

file. L2 and L3 keywords can only be modified through the cs user parameters.c file, even if they
do not appear in the version proposed as example it the SRC/REFERENCE/base directory.
It is however recommended not to modify the keywords which do not belong to the L1 level.

The alphabetical keyword list is displayed in the index, in the end of this report.

Notes
• The notation “d” refers to a double precision real. For instance, 1.8d-2 means 0.018.
• The notation “grand” (which can be used in the code) corresponds to 1012.

4.1 Input-output

Notes

• Two different files can not use the same unit number (in Fortran) nor the same name.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 62/70

4.1.1 ”Calculation” files

General

Thermochemistry

For the calculation file related to the thermochemistry, please refer to the dedicated Doxygen docu-
mentation.

4.2 Numerical options

4.2.1 Calculation management

The following Doxygen documentation provides information about the various calculation management
options available in code saturne such as ntmabs, ntcabs, etc.

4.2.2 Scalar unknowns

Several keywords refering to the scalar unknowns are detailed in the following Doxygen documentation.
The Doxygen page of the Stokes model structure also contains some keywords such as icpsyr, iclvfl
or itbrrb. For other keywords, please refer to the following Doxygen pages refering to nscaus and
iscacp.

4.2.3 Definition of the equations

For informations about istat, iconv, idiff or idifft, please refer to the following Doxygen docu-
mentation.

Moreover, one can find details about the idircl keyword here and about the ivisse keyword there.

4.2.4 Definition of the time advancement

idilat i 1, 2, 3, 4 [1] O L1
Algorithm to take into account the density variation in time

= 1: steady dilatable flow algorithm (default)
= 2: unsteady dilatable flow algorithm
= 3: low-Mach number algorithm
= 4: non conservative algorithm for fire simulation

always useful

cdtvar ra strictly positive real number [1] O L1
multiplicative factor applied to the time step for each scalar
Hence, the time step used when solving the evolution equation for the variable is the
time step used for the dynamic equations (velocity/pressure) multiplied by cdtvar.
The size of the array cdtvar is nvar. For instance, the multiplicative coefficient
applied to the scalar 2 is cdtvar(isca(2))). Yet, the value of cdtvar for the velocity
components and the pressure is not used. Also, although it is possible to change the
value of cdtvar for the turbulent variables, it is highly not recommended
useful if and only if nscal > 1

./doxygen/src/group__main__variables.html#nscaus
./doxygen/src/group__scalar__params.html#iscacp
./doxygen/src/group__linear__solver.html#idircl
./doxygen/src/structcs__stokes__model__t.html#ivisse

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 63/70

varrdt r strictly positive real number [0.1] O L3
maximum allowed relative increase in the calculated time step value between two
successive time steps (to ensure stability, any decrease in the time step is immediate
and without limit)
useful if idtvar 6= 0

For details about time stepping options, please refer to the dedicated Doxygen documentation.

Non-constant time step
The calculation of the time step uses a reference time step dtref (at the calculation beginning). Later,
every time step, the time step value is calculated by taking into account the different existing limits,
in the following order:

• coumax, foumax: the more restrictive limit between both is used (in the compressible module,
the acoustic limitation is added),

• varrdt: progressive increase and immediate decrease in the time step,
• iptlro: limitation by the thermal time step,
• dtmax and dtmin: clipping of the time step to the maximum, then to the minimum limit.

4.2.5 Turbulence

The k− ε (standard and linearized production) and Rij − ε (LRR and SSG) turbulence models imple-
mented in code saturne are “High-Reynolds” models. It is therefore necessary to make sure that the
thickness of the first cell neighboring the wall is larger than the thickness of the viscous sub-layer (at
the wall, y+ > 2.5 is required as a minimum, and preferably between 30 and 100)6. If the mesh does
not respect this condition, the results may be biased (particularly if thermal processes are involved).
Using scalable wall-functions (cf. keyword iwallf) may help avoiding this problem.
The v2-f model is a “Low-Reynolds” model, it is therefore necessary to make sure that the thickness
of the first cell neighboring the wall is smaller than the thickness of the viscous sub-layer (y+ < 1).
The k − ω SST model provides correct results whatever the thickness of the first cell. Yet, it requires
the knowledge of the distance to the wall in every cell of the calculation domain. The user may refer
to the keyword icdpar for more details about the potential limitations.
The k − ε model with linear production allows to correct the known flaw of the standard k − ε model
which overestimates the turbulence level in case of strong velocity gradients (stopping point).
With LES, the wall functions are usually not greatly adapted. It is generally more advisable (if pos-
sible) to refine the mesh towards the wall so that the first cell is in the viscous sub-layer, where the
boundary conditions are simple natural no-slip conditions.
Concerning the LES model, the user may refer to the cs user physical properties smagorinsky c

function for complements about the dynamic model. Its usage and the interpretation of its results
require particular attention. In addition, the user must pay further attention when using the dynamic
model with the least squares method based on a partial extended neighbourhood (imrgra=3). Indeed,
the results may be degraded if the user does not implement his own way of averaging the dynamic
constant in cs user physical properties smagorinsky c (i.e. if the user keeps the local average
based on the extended neighbourhood).

For further details, please refer to the following Doxygen documentation dealing with turbulence options
and turbulence constants.

6While creating the mesh, y+ = yu∗
ν

is generally unknown. It can be roughly estimated as yU
10ν

, where U is the
characteristic velocity, ν is the kinematic viscosity of the fluid and y is the mid-height of the first cell near the wall.

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 64/70

4.2.6 Time scheme

By default, the standard time scheme is a first-order. A second-order scheme is activated automatically
with LES modelling. On the other hand, when “specific physics” (gas combustion, pulverised coal,
compressible module) are activated, the second-order scheme is not allowed.

In the current version, the second-order time scheme is not compatible with the estimators (iescal),
the velocity-pressure coupling (ipucou), the modelling of hydrostatic pressure (icalhy and iphydr)
and the time- or space-variable time step (idtvar).

Also, in the case of a rotation periodicity, a proper second-order is not ensured for the velocity, but
calculations remain possible.

It is recommended to keep the default values of the variables listed below. Hence, in standard cases,
the user does not need to specify these options.

Please refer to the dedicated Doxygen documentation for detailed informations about the time stepping
parameters.

4.2.7 Gradient reconstruction

The gradient reconstruction keywords such as imrgra, nswrgr, epsrgr, imligr, or climgr are members
of the cs var cal opt t structure for which informations can be found in the following Doxygen

documentation.

Details on the anomax keyword can be found here as well.

4.2.8 Solution of the linear systems

See the dedicated Doxygen documentation for most settings related to linear solver options.

More informations on these settings can also be found here.

4.2.9 Convective scheme

For informations on the keywords related to the convective scheme (i.e. blencv, ischcv, isstpc)
please refer to the following Doxygen documentation.

4.2.10 Pressure-continuity step

Several options related to the pressure-continuity step are available and can be modified by the user.
These options can be found in the following Doxygen documentation. For details about the porosity
keyword iporos, please refer to the dedicated Doxygen documentation.

4.2.11 Error estimators for Navier-Stokes

There are currently nestmx=4 types of local estimators provided at every time step, with two possible
definitions for each7. These scalars indicate the areas (cells) in which some error types may be impor-
tant. They are stored using the cs field API (see field get val s(iestim(iestim), c estim)).
For each estimator, the code writes the minimum and maximum values in the log and generates post-
processing outputs along with the other variables.

The additional memory cost is about one real number per cell and per estimator. The additional
calculation cost is variable. For instance, on a simple test case, the total estimator iestot generates

7Choice made by the user

./doxygen/src/structcs__space__disc__t.html#anomax
./doxygen/src/structcs__var__cal__opt__t.html#epsilo
./doxygen/src/group__additional__source__terms.html#iporos

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 65/70

an additional cost of 15 to 20 % on the CPU time8; the cost of the three others may be neglected. If
the user wants to avoid the calculation of the estimators during the computation, it is possible to run
a calculation without estimators first, and then activate them on a restart of one or two time steps.

It is recommended to use the estimators only for visual and qualitative analysis. Also, their use is
compatible neither with a second-order time scheme nor with a calculation with a frozen velocity field.

iest = iespre: prediction (default name: EsPre). After the velocity prediction step (yielding ũ),

the estimator η predi,k (ũ), local variable calculated at every cell Ωi, is created from R pred(ũ), which
represents the residual of the equation solved during this step:

R pred(ũ) = ρn
ũ− un

∆t
+∇ (ũ) · (ρu)

n − div
(
(µ+ µt)

n∇(ũ)
)

+∇(Pn)

− rest of the right-hand side(un, Pn, other variablesn)

By definition:

η predi,k (ũ) = |Ωi| (k−2)/2 ||R pred(ũ)||L2(Ωi)

• The first family, k = 1, suppresses the volume |Ωi| which intrinsically appears with the norm
L2(Ωi).

• The second family, k = 2, exactly represents the norm L2(Ωi). The size of the cell therefore
appears in its calculation and induces a weighting effect.

η predi,k (ũ) is ideally equal to zero when the reconstruction methods are perfect and the associated system
is solved exactly.

iest = iesder: drift (default name: EsDer). The estimator η deri,k (un+1) is based on the following
quantity (intrinsic to the code):

ηderi,k (un+1) = |Ωi| (k−2)/2||div (corrected mass flow after the pressure step)− Γ||L2(Ωi)

= |Ωi| (1−k)/2|div(corrected mass flow after the pressure step)− Γ|
(6)

Ideally, it is equal to zero when the Poisson equation related to the pressure is solved exactly.

iest = iescor: correction (default name: EsCor). The estimator η corri,k (un+1) comes directly from
the mass flow calculated with the updated velocity field:

η corri,k (un+1) = |Ωi| δ 2,k |div(ρnun+1)− Γ|

The velocities un+1 are taken at the cell centers, the divergence is calculated after projection on the
faces.
δ 2,k represents the Kronecker symbol.
• The first family, k = 1, is the absolute raw value of the divergence of the mass flow minus the

mass source term.
• The second family, k = 2, represents a physical property and allows to evaluate the difference in

kg.s−1.
Ideally, it is equal to zero when the Poisson equation is solved exactly and the projection from the mass
flux at the faces to the velocity at the cell centers is made in a set of functions with null divergence.

iest = iestot: total (default name: EsTot). The estimator ηtoti,k(un+1), local variable calculated at

every cell Ωi, is based on the quantity Rtot(un+1), which represents the residual of the equation using
the updated values of u and P :

Rtot(un+1) = ρn
un+1 − un

∆t
+∇

(
un+1

)
· (ρu)

n+1 − div
(
(µ+ µt)

n∇(un+1)
)

+∇(Pn+1)

− rest of the right-hand side(un+1, Pn+1, other variablesn)

8Indeed, all the first-order in space differential terms have to be recalculated at the time tn+1

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 66/70

By definition:

ηtoti,k (un+1) = |Ωi| (k−2)/2 ||Rtot(un+1)||L2(Ωi)

The mass flux in the convective term is recalculated from un+1 expressed at the cell centres (and not
taken from the updated mass flow at the faces).

As for the prediction estimator:

• The first family, k = 1, suppresses the volume |Ωi| which intrinsicly appears with the norm
L2(Ωi).

• The second family, k = 2, exactly represents the norm L2(Ωi). The size of the cell therefore
appears in its calculation and induces a weighting effect.

The estimators are evaluated depending on the values of iescal.

4.2.12 Calculation of the distance to the wall

The options related to the calculation of the distance to the wall are described in the following Doxygen

documentation. Some options are used only in the case of the calculation of the non-dimensional dis-
tance to the wall y+ (LES model with van Driest damping). Most of the keywords are simple copies
of the keywords for the numerical options of the general equations, with a potentially specific value in
the case of the calculation of the distance to the wall.

4.2.13 Others

Informations concerning the remaining keywords can be reached through the following Doxygen pages:

• iccvfg and ipucou

• nterup and epsup

• imvisf

• irclu, nswrsm and epsrsm

• isuit1

4.3 Numerical, physical and modelling parameters

4.3.1 Numeric parameters

These parameters correspond to numeric reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

For a list of these physical parameters, please refer to the following Doxygen documentation.

4.3.2 Physical parameters

These parameters correspond to physical reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

For a list of these physical parameters, please refer to the following Doxygen documentation.

./doxygen/src/structcs__space__disc__t.html#imvisf
./doxygen/src/group__optcal.html#isuit1

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 67/70

4.3.3 Physical variables

Most physical variables are listed in the following Doxygen documentation.

Other physical variables such as diftl0, srrom, sigmas or rvarfl are described in the following
Doxygen pages :

• diftl0,

• srrom,

• sigmas, rvarfl.

4.4 ALE

For further details about the ALE calculation options, please refer to the dedicated Doxygen pages
here and there. The following Doxygen documentation might be useful as well.

4.5 Thermal radiative transfers: global settings

Most of radiative module keywords may be modified in the user subroutines cs user radiative * (or,
for some of them, through the thermochemical data files).

For a detailed list of these keywords, please refer to the following Doxygen documentation.

4.6 Electric module (Joule effect and electric arcs): specificities

The electric module is composed of a Joule effect module (ippmod(ieljou)) and an electric arcs
module (ippmod(ielarc)).

The Joule effect module is designed to take into account the Joule effect (for instance in glass furnaces)
with real or complex potential in the enthalpy equation. The Laplace forces are not taken into account
in the impulse momentum equation. Specific boundary conditions can be applied to account for the
coupled effect of transformers (offset) in glass furnaces.

The electric arcs module is designed to take into account the Joule effect (only with real potential) in
the enthalpy equation. The Laplace forces are taken into account in the impulse momentum equation.

The different keywords used in the electric module are detailed in the following Doxygen documentation.

./doxygen/src/group__thermophysical.html#diftl0
./doxygen/src/group__enthalpy.html#srrom
./doxygen/src/group__conv__scheme.html#iflxmw

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 68/70

5 Bibliography
[1] F. Archambeau, N. Méchitoua, M. Sakiz,

code saturne: a Finite Volume Code for the Computation of Turbulent Incompressible Flows,
Industrial Applications, International Journal on Finite Volumes, Vol. 1, 2004.

[2] S. Benhamadouche,
Modélisation de sous-maille pour la LES - Validation avec la Turbulence Homogène Isotrope (THI)
dans une version de développement de code saturne,
EDF Report HI-83/01/033/A, 2001 (in French).

[3] M. Boucker, J.D. Mattéi,
Proposition de modification des conditions aux limites de paroi turbulente pour le Solveur Commun
dans le cadre du modèle k − ε standard,
EDF Report HI-81/00/019/A, 2000 (in French).

[4] A. Escaich, P. Plion, Mise en œuvre dans code saturne des modélisations physiques particulières.
Tome 1 : Combustion en phase gaz,
EDF Report, HI-81/02/03/A, 2002 (in French).

[5] A. Escaich, Mise en œuvre dans code saturne des modélisations physiques particulières. Tome 2 :
Combustion du charbon pulvérisé,
EDF Report, HI-81/02/09/A, 2002 (in French).

[6] A. Douce, N. Méchitoua,
Mise en œuvre dans code saturne des physiques particulières. Tome3 : Transfert thermique radiatif
en milieu gris semi-transparent,
EDF Report HI-81/02/019/A, 2002 (in French).

[7] M. Tagorti., S. Dal-Secco, A. Douce, N. Méchitoua,
Physiques particulières dans code saturne, tome 4 : le modèle P-1 pour la modélisation des trans-
ferts thermiques radiatifs en milieu gris semi-transparent,
EDF Report HI-81/03/017/A, 2003 (in French).

[8] A. Douce,
Physiques particulières dans code saturne 1.1, Tome 5 : modélisation stochastique lagrangienne
d’écoulements turbulents diphasiques polydispersés,
EDF Report, HI-81/04/03/A, 2005 (in French).

[9] N. Méchitoua, F. Archambeau,
Prototype de solveur volumes finis co-localisé sur maillage non-structuré pour les équations de
Navier-Stokes 3D incompressibles et dilatables avec turbulence et scalaire passif,
EDF Report HE-41/98/010/B, 1998 (in French).

[10] code saturne documentation,
code saturne 7.2 Theory and Programmer’s guide,
on line with the release of code saturne 7.2 (code saturne info --guide theory).

[11] E. Bouzereau,
Représentation des nuages chauds dans le modèle météorologique “Mercure”: Application aux
panaches d’aéroréfrigérants et aux précipitations orographiques,
EDF,Universite Pierre et Marie Curie-Paris VI, PHD, 2004 (in French).

[12] R. Stull,
An introduction to boundary layer meteorology ,
Springer, 1988.

[13] J.W. Deardorff,
Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vege-
tation,
Journal of Geophysical Research,83:1889-1903 , 1978.

Index of the main variables and keywords
– Symbols –

icodcl . 7
itypfb . 7
rcodcl . 7

– A –
atgaze . 19

– C –
cdtvar .62
cebu . 28
ckabsg . 20
compog . 19
couimp .42

– D –
diftl0 .28
distch . 25

– E –
ehgazg . 20

– F –
fment . 25
fs(1) . 20

– I –
i convective inlet . 8
ialtyb . 46
ibfixe . 46
iccoal . 17
icdpar .63
icfuel .17
ickabs . 27
icod3p . 16
icoebu . 16
icolwc . 17
icompf . 17, 18
icpl3c . 17
idebty .13
idiam2 . 27
idilat .62
ielarc . 17, 67
ieljou . 17, 67
ientat . 25
ientcp . 25
ientfu . 25
ientgb .24
ientgf . 24
ientox . 25
ientre .8, 24
iescor . 65
iesder . 65
iespre . 65

iestot . 65
if1m . 23, 28
if2m . 23, 28
if3m . 23, 28
if3p2m . 28
if4p2m . 23
if4pm . 28
ifinty .13
ifm . 21, 27
ifp2m . 21, 27
ifp3m . 23
ifrent .8
ifresf . 8, 46
igfuel . 19
igliss . 46
igmdch .27
igmdv1 .27
igmdv2 .27
igmhet . 27
igoxy .19
ih2 . 23, 27
ihm . 27
iindef . 8
immel . 27
indjon .18
inp . 23, 27
iparoi . 8
iparug .8
ippmod . 16
iqimp . 24
irom2 . 27
isolib . 8
isymet . 8
it3m . 27
it4m . 27
itemp . 27
itemp1 . 28
itemp2 . 27
itrifb . 13
iu . 24
iv . 24
ivimpo . 46
iw . 24
ix2 . 27
ixch . 21, 27
ixck . 23, 27
ixkabe . 20
iygfm .21, 27
iym(1) . 27
iym(2) . 27
iym(3) . 27
iym1(1) . 28

69

EDF R&D code saturne version 7.2 practical user’s
guide

code saturne
documentation

Page 70/70

iym1(2) . 28
iym1(3) . 28
iym1(4) . 28
iym1(5) . 28
iym1(6) . 28
iym1(7) . 28
izone . 24

– K –
kabse . 19

– N –
nato . 19
ncharm . 17
nclpch . 17
ncpcmx . 17
nestmx .64
ngaze . 19
ngazg . 19, 20
nomcoe . 19
npo . 19, 20
nrgaz . 19
ntypmx . 9

– P –
puismp .42

– Q –
qimp . 24
qimpat . 25
qimpcp . 25

– R –
rcodcl . 24

– S –
srrom . 28
stoeg .19

– T –
th .20
timpat . 25
timpcp . 25
tinfue . 25
tinoxy .25
tkent .25
tmax .19
tmin . 19

– V –
varrdt .63

– W –
wmolat . 19
wmolg . 20

– X –
xco2 . 20

xh2o . 20
xkabe . 20
xkabel . 20

	Flyleaf
	Abstract
	Table of contents
	Introduction
	Basic modelling setup
	Manage boundary conditions
	Coding of standard boundary conditions
	Coding of non-standard boundary conditions
	Checking of the boundary conditions
	Sorting of the boundary faces

	User source terms
	In Navier-Stokes
	For k and
	For Rij and
	For and f
	For k and
	For t
	For user scalars

	Advanced modelling setup
	Use of a specific physics
	Pulverised coal and gas combustion module
	Boundary conditions
	Initialisation of the options of the variables

	Heavy fuel oil combustion module
	Initialisation of transported variables
	Boundary conditions

	Radiative thermal transfers in semi-transparent gray media
	Initialisation of the radiation main parameters
	Radiative transfers boundary conditions
	Absorption coefficient of the medium, boundary conditions for the luminance and calculation of the net radiative flux

	Conjugate heat transfer
	Thermal module in a 1D wall
	Internal Fluid-Thermal coupling
	Fluid-Thermal coupling with SYRTHES

	Particle-tracking (Lagrangian) Module
	General information
	Activating the particle-tracking module
	Basic guidelines for standard simulations
	Prescribing the main modelling parameters
	Prescribing particle boundary conditions
	Advanced particle-tracking set-up

	Compressible module
	 Initialisation of the options of the variables
	Management of the boundary conditions
	Initialisation of the variables
	Management of variable physical properties

	Management of the electric arcs module
	Activating the electric arcs module
	Initialisation of the variables
	Variable physical properties
	Boundary conditions
	Initialisation of the variable options

	code_saturne-code_saturne coupling
	Fluid-Structure external coupling
	ALE module
	Initialisation of the options
	Mesh velocity boundary conditions
	Modification of the mesh viscosity
	Fluid - Structure internal coupling

	Management of the structure property
	Management of the atmospheric module
	Directory structure
	The atmospheric mesh features
	Atmospheric flow model and steady/unsteady algorithm
	Physical properties
	Boundary and initial conditions
	User subroutines
	Physical models
	Atmospheric main variables
	Recommendations

	Turbomachinery computations
	Introduction
	Meshing reccomendations
	Turbomachinery dedicated postprocessing functions
	Data setting, keywords and examples

	Cavitation module

	Keyword list
	Input-output
	''Calculation'' files

	Numerical options
	Calculation management
	Scalar unknowns
	Definition of the equations
	Definition of the time advancement
	Turbulence
	Time scheme
	Gradient reconstruction
	Solution of the linear systems
	Convective scheme
	Pressure-continuity step
	Error estimators for Navier-Stokes
	Calculation of the distance to the wall
	Others

	Numerical, physical and modelling parameters
	Numeric parameters
	Physical parameters
	Physical variables

	ALE
	Thermal radiative transfers: global settings
	Electric module (Joule effect and electric arcs): specificities

	Bibliography
	Index of the main variables and keywords

