7.1
general documentation
Scaling parameters definition for electric model (cs_user_electric_scaling.c)

Introduction

C user function for scaling parameters definition for electric model.

Scaling parameters definition for electric model

cs_real_t *xyzcen = mesh_quantities->cell_cen;
cs_real_t *volume = mesh_quantities->cell_vol;
const cs_real_3_t *surfac = (const cs_real_3_t *) mesh_quantities->b_face_normal;
const cs_real_3_t *cdgfac = (const cs_real_3_t *) mesh_quantities->i_face_cog;
const int kivisl = cs_field_key_id("diffusivity_id");
/* example of a restrike arc */
if (ielarc >= 1) {
elec_opt->couimp = 200.;
else if (cs_glob_time_step->nt_cur > 200 &&
elec_opt->couimp = 200. + 2. * (cs_glob_time_step->nt_cur - 200);
else
elec_opt->couimp = 600.;
}
if (cs_glob_time_step->nt_cur < 400 ||
elec_opt->irestrike = 0;
double econs = 1.5e5;
double coepot = 0.;
double coepoa = 1.;
double amex = 1.e30;
double aiex = -1.e30;
double emax = 0.;
double *w1;
BFT_MALLOC(w1, ncelet, double);
int diff_id = cs_field_get_key_int(CS_FI_(curre, 0), kivisl);
cs_field_t *c_prop = NULL;
c_prop = cs_field_by_id(diff_id);
for (int iel = 0; iel < ncel; iel++) {
double xelec = CS_FI_(curre, 0)->val[iel] / c_prop->val[iel];
double yelec = CS_FI_(curre, 1)->val[iel] / c_prop->val[iel];
double zelec = CS_FI_(curre, 2)->val[iel] / c_prop->val[iel];
w1[iel] = pow(xelec * xelec + yelec * yelec + zelec * zelec, 0.5);
amex = CS_MIN(amex, w1[iel]);
aiex = CS_MAX(amex, w1[iel]);
}
cs_parall_min(1, CS_DOUBLE, &amex);
cs_parall_max(1, CS_DOUBLE, &aiex);
bft_printf("min and max for E : %14.5E %15.4E\n", amex, aiex);
if (aiex > econs) {
elec_opt->irestrike = 1;
/* initialize restrike point coordinates */
elec_opt->restrike_point[0] = 1.e-8;
elec_opt->restrike_point[1] = 1.e-8;
elec_opt->restrike_point[2] = 1.e-8;
double diff = 0.;
double xyzmax[3] = {-1.e10, -1.e10, -1.e10};
for (int iel = 0; iel < ncel; iel++) {
diff = aiex - w1[iel];
if (diff < 1.e-6) {
emax = w1[iel];
xyzmax[0] = xyzcen[3 * iel ];
xyzmax[1] = xyzcen[3 * iel + 1];
xyzmax[2] = xyzcen[3 * iel + 2];
}
}
/* we can only have a single restrike point */
cs_parall_max_loc_vals(3, &emax, xyzmax);
elec_opt->restrike_point[0] = xyzmax[0];
elec_opt->restrike_point[1] = xyzmax[1];
elec_opt->restrike_point[2] = xyzmax[2];
bft_printf("restrike point : %14.5E %14.5E %14.5E\n",
elec_opt->restrike_point[0],
elec_opt->restrike_point[1],
elec_opt->restrike_point[2]);
}
BFT_FREE(w1);
if (cs_glob_time_step->nt_cur <= elec_opt->ntdcla + 30) {
double z1 = elec_opt->restrike_point[0] - 3.e-4;
double z2 = elec_opt->restrike_point[0] + 3.e-4;
if (z1 < 0.)
z1 = 0.;
if (z2 > 2.e-2)
z2 = 2.e-2;
for (int iel = 0; iel < ncel; iel++) {
if (xyzcen[3 * iel + 2] > z1 && xyzcen[3 * iel + 2] < z2) {
double rayo = elec_opt->restrike_point[0] * xyzcen[3 * iel ]
- elec_opt->restrike_point[1] * xyzcen[3 * iel + 1];
double denom = pow(elec_opt->restrike_point[0] * elec_opt->restrike_point[0]
+ elec_opt->restrike_point[1] * elec_opt->restrike_point[1], 0.5);
rayo /= denom;
rayo += (xyzcen[3 * iel + 2] - elec_opt->restrike_point[2]
* xyzcen[3 * iel + 2] - elec_opt->restrike_point[2]);
rayo = pow(rayo, 0.5);
double posi = elec_opt->restrike_point[0] * xyzcen[3 * iel];
if (rayo < 5.e-4 && posi <= 0.)
CS_F_(h)->val[iel] = 8.e7;
}
}
}
else {
elec_opt->irestrike = 0;
}
double somje = 0.;
for (int iel = 0; iel < ncel; iel++) {
somje += CS_F_(joulp)->val[iel] * volume[iel];
}
cs_parall_sum(1, CS_DOUBLE, &somje);
if (fabs(somje) > 1.-20)
bft_printf("imposed current %14.5E, Dpot %14.5E, Somje %14.5E\n",
somje);
double elcou = 0.;
for (int ifac = 0; ifac < nfac; ifac++) {
if (fabs(surfac[ifac][0]) < 1.e-8 && fabs(surfac[ifac][1]) < 1.e-8 &&
cdgfac[ifac][2] > 0.05e-2 && cdgfac[ifac][2] < 0.08e-2) {
int iel = mesh->i_face_cells[ifac][0];
elcou += CS_FI_(curre, 2)->val[iel] * surfac[ifac][2];
}
}
cs_parall_sum(1, CS_DOUBLE, &elcou);
if (fabs(elcou) > 1.e-6)
elcou = fabs(elcou);
else
elcou = 0.;
if (fabs(elcou) > 1.e20)
coepot = coepoa;
double dtj = 1.e15;
double dtjm = dtj;
double delhsh = 0.;
double cdtj = 20.;
for (int iel = 0; iel < ncel; iel++) {
if (fabs(CS_F_(rho)->val[iel]) > 1.e-20)
delhsh = CS_F_(joulp)->val[iel] * dt[iel]
/ CS_F_(rho)->val[iel];
if (fabs(delhsh) > 1.e-20)
dtjm = CS_F_(h)->val[iel] / delhsh;
else
dtjm = dtj;
dtjm = fabs(dtjm);
dtj = CS_MIN(dtj, dtjm);
}
cs_parall_min(1, CS_DOUBLE, &dtj);
double cpmx = pow(cdtj * dtj, 0.5);
coepot = cpmx;
if (coepoa > 1.05)
coepot = cpmx;
else
coepot = coepoa;
}
bft_printf(" Cpmx = %14.5E\n", cpmx);
bft_printf(" COEPOA = %14.5E\n", coepoa);
bft_printf(" COEPOT = %14.5E\n", coepot);
bft_printf(" Dpot rescaled = %14.5E\n",
/* scaling electric fields */
elec_opt->pot_diff *= coepot;
/* electric potential (for post treatment) */
for (int iel = 0; iel < ncel; iel++)
CS_F_(potr)->val[iel] *= coepot;
/* current density */
if (ielarc > 0)
for (int i = 0; i < 3 ; i++)
for (int iel = 0; iel < 3 ; iel++)
CS_FI_(curre, i)->val[iel] *= coepot;
/* joule effect */
for (int iel = 0; iel < 3 ; iel++)
CS_F_(joulp)->val[iel] *= coepot * coepot;
}