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Context
• Studying impact of the climate on EDF

facilities and reciprocally : problem of
cloudy atmosphere for photovoltaic energy
production

• Having a local-scale forecast model able to
simulate fog formation and evolution

• Taking account spatial heterogeneities
with a 3-D Radiative Transfer model

Basic Concepts
• Plane-parallel atmosphere : stacked homo-

geneous layers

• ⇒ Absorption coefficients are horizontally
constant

• Radiative properties are parametrized by
emissivity functions fitted on charts

ε :
(
z
′
, z
)
7→ 1

σT 4

∫ +∞

0

[
1− T̃

(
z, z

′)]
πIoλ

(
z
′)
dλ

Acknowledgements
This research is supported by the CEREA
(http://cerea.enpc.fr/fr/) and EDF R&D (http:
//innovation.edf.com/innovation-et-recherche-20.
html) The supports are gratefully acknowledged.

Objectives
• Using a 3-D resolution method, fast as possible and accurate enough

• Coupling emissivity functions with Discrete Ordinates Method

• Comparisons of heating rates and fluxes computed by the existing and validated 1-D model in
atmospheric module of Code_Saturne R©

• Comparisons with a radiative transfer model which uses multi-spectral resolution (Correlated-K
Distribution)

Theoretical approach - Plane-Parallel Amtmosphere
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Solution for the Cooling to Space approximation

⇒

Radiative Transfer Equation on radiance︷ ︸︸ ︷
cosθ
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where k(z) is equal k↑(z) if cos θ > 0 and k↓(z) if
cos θ > 0
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• Radiative properties averaged over the whole spectrum to save time computing

• Different mean absorption coefficient for upwards and downwards directions has no physical
sense

• Exact mathematical approach for an isothermal atmosphere (Cooling-To-Space)

Heating/Cooling rates comparisons - Clear sky conditions - Validation
Boundary Condition Cooling-To-Space Approximation - Clear sky
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ParisFOG field experiment - Clear sky
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Cloudy Atmosphere
ParisFOG field experiment - 12h
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Conclusion/Further work
• New approach fast and accurate enough

validated on semi-analytical solutions

• Infrared heating/cooling rates in clear sky
or cloudy condition : strong cooling above
the fog layer, heating below it

• Weak/Strong coupling of our approach
with Fluid Dynamics

Definitions
• I : radiance

• F ↑↓ : upward and downward fluxes

• I0 Planck function

• Srad : Divergence of the radiative flux called heat-
ing rate

• k gray absorption coefficient

• TA temperature of the atmosphere

• Tg temperature of the ground

• T̃ transmittance function

• ε :
(
z
′
, z

)
: emissivity between z

′
and z


