

TURBOMACHINERY COMPUTATIONS WITH LAGRANGIAN PARTICLE TRACKING: Developments and validation

B. de Laage de Meux and T. Pasutto

Code_Saturne user meeting

2nd of April 2014

- **1.** INTRODUCTION
- **2.** CONSERVATIVE APPROACH FOR ROTOR/STATOR COUPLING
- **3.** LAGRANGIAN PARTICLE TRACKING ON ROTATING GRIDS
- 4. CONCLUSION AND FUTUR PROSPECTS

1. INTRODUCTION

- **2.** CONSERVATIVE APPROACH FOR ROTOR/STATOR COUPLING
- **3.** LAGRANGIAN PARTICLE TRACKING ON ROTATING GRIDS
- 4. CONCLUSION AND FUTUR PROSPECTS

CONTEXT

- Emergency Core Cooling System (ECCS) and Containment Spray System (CSS) studies
 - Pumps affected by the recirculation mode
 - Thermal shock ⇒ thermomechanical stress
 - Particle entrainment could damage the shaft bearing or sealing components

METHODOLOGY

■ Computational approach for safeguard pumps studies ⇒ upgrade Code_Saturne

Rotor/stator interactions methods

- Previous implementation based on code-code coupling
- Suffers deficiencies:
 - × Lack of conservativity during transient
 - × Cumbersome user data management
 - × Lagrangian module: how to manage the particle tracking across the interface (boundaries) ?
- ⇒ Full review of the rotor/stator coupling implementation

Existing algorithm has to be extended for rotating grids

1. INTRODUCTION

2. CONSERVATIVE APPROACH FOR ROTOR/STATOR COUPLING

- **3.** LAGRANGIAN PARTICLE TRACKING ON ROTATING GRIDS
- 4. CONCLUSION AND FUTUR PROSPECTS

CONSERVATIVE APPROACH FOR ROTOR/STATOR COUPLING: description

Basic principle: rotor/stator interface treated as internal faces thanks to mesh joining

- Frozen rotor (steady)
 - One joining at the beginning or single mesh

$$\frac{\partial u_A}{\partial t} + \nabla \cdot (u_A \otimes u_R) + \mathbf{\Omega} \wedge u_A = -\frac{1}{\rho} \nabla p + \nabla \cdot (v \nabla u_A), \qquad \begin{array}{l} u_A & \text{: absolute velocity} \\ u_R = u_A - \mathbf{\Omega} \wedge x & \text{: relative velocity} \end{array}$$

Unsteady rotor/stator

Genova's pump: frozen rotor

Velocity: visualization of the field and profiles in the vaneless gap

Pressure: visualization of the field and profiles at midchannel (top) and in the vaneless gap (bottom)

- Results almost identical with code-code coupling and mesh joining <u>at convergence</u>
- No more unphysical pressure fluctuations during the transient

Genova's pump: unsteady rotor/stator

vaneless gap

CPU time mesh regeneration operations / total CPU time of the simulation	14.7 %
total CPU time with the mesh joining algorithm /	92.6 %

- Results almost identical with code-code coupling and mesh joining at convergence
- Slight computation savings with the mesh joining algorithm

Overview of computations performance

- Gourdin's pump
 - Centrifugal pump quite similar to safeguard pumps
 - Pump characteristics (total head, efficiency, ...) at several flowrates measured at EDF Lab Chatou (EPOCA)
 - Previous numerical study with CFX TASCflow (CETIM, 2005)
 - \Rightarrow Existing CAD and mesh files

Fotograph of the pump (left) and computational model (right)

Computation methodology

- Mesh ~ 1.2 M cells (hexaedral): 70000 (inlet) + 650000 (blade channels) + 500000 (casing)
- Large grid refinement gap between rotor and casing
 - × Joining failure or system inversion divergence
 - ✓ Introduce a buffer cells layer between rotating and fixed grid in order to « smooth » de refinement gap

Grid refinement at interface: inital (left) and introduction of a buffer layer (right)

- Solver options
 - - Turbulence: k-ε + scalable wall function

Nominal flowrate

- Partial consistency between frozen rotor and unsteady computation
- Limited rotor/stator interactions: only the volute tongue effects

Velocity magnitude : frozen rotor (left) and unsteady rotor/stator (right)

Partial and over flowrates

Streamlines colored by turbulent kinetic energy at nominal (left) and partial flowrate (rate)

- **1.** INTRODUCTION
- **2.** CONSERVATIVE APPROACH FOR ROTOR/STATOR COUPLING
- **3. LAGRANGIAN PARTICLE TRACKING ON ROTATING GRIDS**
- **4.** CONCLUSION AND FUTUR PROSPECTS

PARTICLE TRACKING ON ROTATING GRID

 Trivial extension of the Lagrangian module in order to take into account the mesh displacement

- Verification test case:
 - Radial injection of a particle in a solid body rotation flow (laminar)
 - Particle subjected to the drag force only
 - Inner part of the mesh is rotating

Rotating mesh

PARTICLE TRACKING ON ROTATING GRID

Qualitative test case

- Particle density effect in the Genova's centrifugal pump
- Model description
 - Particle properties
 - Density ratio: 1 and 100
 - Spherical particles of 50μm diameters
 - · Particles subjected to drag force and pressure gradient
 - Numerical parameters
 - CFL max ~ 0,3
 - One way coupling
 - Integration of stochastic differential equations: second order scheme
 - Turbulent diffusion: standard model

Observations

• Light particles: mainly follow the streamlines

TOP VIEW

• Heavy particle: many rebounds, large particle velocity variations, depending on they are hit by the rotor blades or not

SIDE VIEW

Code_Saturne user meeting | 2nd of April 2014 | 16

- **1.** INTRODUCTION
- **2.** CONSERVATIVE APPROACH FOR ROTOR/STATOR COUPLING
- **3.** LAGRANGIAN PARTICLE TRACKING ON ROTATING GRIDS
- 4. CONCLUSION AND FUTUR PROSPECTS

CONCLUSION

- Fully revised implementation of the rotor/stator interactions methods (available in v3.2)
 Conservative
 - Single user data management
- Application to the prediction of a centrifugal pump characteristics at various flowrates
 Special attention to mesh strategy and appropriate numerical parameters
- Extension of the Lagrangian module for rotating grids
 - Analytical verification and qualitative comparisons in a centrifugal pump test case

Perspectives

- Multi-rotor management
- Dedicated post-processing routines (machinery characteristics, etc...)

Present and future works

- Industrial studies on safeguard pumps
- Cavitation modeling

INDUSTRIAL APPLICATION TO CSS PUMP: OVERVIEW

- Thermal shock
 - Large temperature gradient in the upper part of the lid
 - Possible differential dilatation of the material
 - Thermomechanical study in progress...

Temperature field in the lid (calculation of F. Jusserand)

- Particle nocivity
 - Prediction of the particle distribution at the inlet of the lubrification system
 - □ Work in progress...

TEMPERATURE

HYDRAULIC MACHINERY COMPUTATIONS: FUTURE CAVITATION MODULE OF CODE_SATURNE

- Homegeneous two-phase flow model (R. Chebli, B. Audebert)
 - Mixture density: $\rho = \alpha \rho_V + (1 \alpha) \rho_L$ (ρ_V, ρ_L constant)

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (u\alpha) = \frac{\Gamma}{\rho_V} \quad \text{F: vaporisation} \\ \text{source term}$$

Validated in a serie of cavitating flows

Cavitation pockets on rotor blades

	<i>L</i> (mm)	F (s ⁻¹)	St
Experiment	50	45	0.31
k-ε	47.5	38.5	0.25
<i>k-ε</i> RNG	57	35	0.28
SST	49	45	0.30
SSG	62.5	33.5	0.29

Venturi 8°: preliminary results

Available in v3.3

THANK YOU

Code_Saturne user meeting | 2nd of April 2014 | 21