An overview of existing and future atmospheric simulations with Code_Saturne

2/4/2014- ClubU-Code_Saturne

B. Carissimo et col.

Outline

- Why an atmospheric option in *Code_Saturne* ?
- Boundary conditions
- Equations
- Additional models (chemistry, nano-particles ...)
- Validations
- Futur plans

Why an atmospheric option in Code_Saturne ?

Atmospheric environment :

Pollutant dispersal, wind energy (cf. poster), building and city neighboorhood studies ...

Example : flow over a 3D hill

Boundary conditions: 1 rough wall : ground 5 inlet-outlet faces : free atmosphere

Stratification Influence on dispersion :

Vertical structure of the atmosphere

Vertical profile of temperature

(standard atmosphere USA 1976)

Free atmosphere Atmospheric Boundary Layer (0.1 – 2 km)

- Use compressible equations ?
 - Low Mach number, very little energy in sound part of the spectrum
 - Adding complexity (ByC) (already in with internal gravity waves)
 - Rarely used in mesoscale meteorological models
- Prefer anelastic approximation already in Code_Saturne, but using potential temperature

Adiabatic transformation and potential temperature

• First law of thermodynamics + perfect gas law :

$$dq = C_p dT - \alpha dp \qquad p\alpha = rT$$

• Adiabatic process : no heat exchange

$$0 = C_p dT - \frac{rT}{p} dp \qquad \Longrightarrow \qquad 0 = \frac{dT}{T} - \frac{r}{C_p} \frac{dp}{p}$$

 Potential temperature : temperature that an air parcel would have if it was expanded or compressed adiabatically from its existing pressure and temperature to a standard pressure p₀ (1000hPa)

$$\Theta = T \left(\frac{p_0}{p}\right)^{\frac{r}{C_p}}$$

7

Code_Saturne 3.0: atmospheric options

	Steady/Unsteady flow algorithm		
🗟 Identity and paths	, , ,		
▽ 🛅 Calculation environment		unsteady flow	0
🗟 Meshes selection			
🕞 Mesh quality criteria	Eulerian-Lagrangian multi-phase	treatment	
▽ 🛅 Thermophysical models			
📄 Calculation features		011	~
📑 Deformable mesh			
📑 Turbulence models	Atmospheric flows		
📑 Thermal model		off	
📑 Species transport			
🗢 🛅 Physical properties	Car amburting	constant density	
Reference values	Gas compustion	dry atmosphere	
📑 Fluid properties		humid atmosphere	
📑 Gravity		Huiltu aulosphere	
🗢 🛅 Volume conditions	Pulverized fuel combustion		
📑 Volume regions definition			
📑 Initialization		off	\$
📑 Coriolis Source Terms			
🗢 🛅 Boundary conditions	Electrical models		
📑 Definition of boundary regions		-55	
📑 Boundary conditions		отт	
🗢 🛅 Numerical parameters			
📑 Global parameters	Compressible model		
📑 Equation parameters		off	
📑 Time step			
🗢 🛅 Calculation control			
📑 Time averages			
📑 Output control			
📑 Volume solution control			
📑 Surface solution control			
📑 Profiles			
🗢 🛅 Calculation management			
🖫 Start/Restart			
📑 Performance tuning			
🕞 Prepare batch calculation			

dry atmosphere : θ humid atmosphere : θ_l, q_w, N_c

Code_Saturne 3.0: atmospheric boundary conditions

Equations in Code_Saturne 3.0, atmospheric option

- Momentum : unchanged
- Continuity : unchanged
- Energy for « dry atmosphere » :
- « humid atmosphere » :

$$\frac{\partial \theta}{\partial t} = \dots$$

$$\theta_l q_w N_c$$

(Moments of droplet distribution)

 + modified turbulence buoyancy production (k-eps) and rough wall laws (Monin-Obukhov similarity) Validation for Code_Saturne 3.0, atmospheric option

- Standard Validation :
 - Roughness transition, comparison with data (Bradley)
 - Boundary layer diurnal cycle (Wangara)
- Additional atmospheric validations (cf. poster):
 - Land-sea breeze (analytical)
 - Mountain waves (analytical)
 - Dispersion of heavy gas (including aerosols)
 - Cooling tower plume

Structure of the ABL

Stull (1988)

Code_Saturne: validation on Wangara experiment - I

Experiment often used to test the ability of models to reproduce the diurnal cycle
Vertical profiles of potential temperature

Dispersion modeling in built up environment MUST experiment (Mock Urban Setting Test)

•

32-m tower: 3D sonics and photo- ionisation detectors.	
16-m pneumatic mast : 2D sonics	
○ 8-m tower: 3D sonics	
• 5-m tower: 3D sonics	
3D sonics (3.80 m, 2.37 m, 1.70 m)	
 3D sonics (1.6 m) 	
◆ 2D sonics (2m)	
<pre>•••Ines of photo-ionisation detectors (1.6 m)</pre>	

2

Chemistry submodel

- Canyon ventilation
- Chemical reactions

Oxyde d'Azote

Ozone

Formation des nano-particules par le trafic routier (Albriet et al. 2009) *Cerea*

1.047e+12

0.000c+00

Futur plans :

- non-uniform large scale meteo
 - (nesting or « imbrication »)
- <u>3D atmospheric radiative scheme</u>
- Rij atmospheric
- Lagrangian module for atmospheric dispersion
- Data assimilation

Validation with CAPITOUL dataset (Qu, 2012)

Simulation set-up for July 15th 2004 Central site area geometry processed by ICEM CFD Domain size: 891x963x200 m Mesh strategy

Simulation mesh, total mesh ~1,8 M

Validation with CAPITOUL dataset (Qu, 2012)

• Simulation of July 15th 2004

Thermal infrared (TIR) airborne images 1412 UT during flight 432 (Lagouarde et al. 2010):

Validation with CAPITOUL dataset (Qu, 2012)

• Simulation of July 15th 2004

Comparison of friction velocity

At roof surface: $u^* = (1 \tau_w/\rho 1)^{1/2}$

On the mast: $u^* = (\underline{u'w'^2} + \underline{u'w'^2})^{1/4}$

Code_Saturne current simulations on Marseille / Saint Marcel - I

Code_Saturne current simulations on Marseille / Saint Marcel -II

12 h UTC

24 h UTC

Heat flux from the wall Wind at 55 m ASL Thank you for your attention !

Code_Saturne: validation on Wangara experiment - II Vertical profiles of potential temperature

La modélisation des panaches d'aéroréfrigérants avec Code_Saturne

Paramétrisations physiques dans Code_Saturne

- Turbulence RANS modèle k-ε
- Processus radiatifs dans le domaine solaire et IR
- Modélisation interface sol-Atmopshère
- Microphysique des nuages basée sur une représentation semi-spectrale (loi lognormale)
- Modélisation des précipitations
- Résolution explicite des bâtiments en maillage non-structuré

Adiabatic transformation and potential temperature - II

• Adiabatic lapse rate :

$$0 = \frac{1}{T} \frac{\partial T}{\partial z} - \frac{r}{C_p} \frac{1}{p} \frac{\partial p}{\partial z} \implies \Gamma_{ad} = -\left(\frac{\partial T}{\partial z}\right)_{ad} = -T \frac{r}{C_p} \frac{1}{p} \frac{\partial p}{\partial z}$$

Adding hydrostatic relation :
$$\left(\frac{\partial T}{\partial z}\right)_{ad} = -\frac{g}{C_p} = -9.8 \, K \, / \, km$$

• Potential temperature gradient near the ground : $\theta \approx T$

$$\frac{1}{\theta} \frac{\partial \theta}{\partial z} = \frac{1}{T} \frac{\partial T}{\partial z} - \frac{r}{C_p} \frac{1}{p} \frac{\partial p}{\partial z}$$
$$\frac{\partial \theta}{\partial z} \approx \frac{\partial T}{\partial z} - \left(\frac{\partial T}{\partial z}\right)_{ad}$$

Adiabatic transformation and potential temperature - III

