Three canonical flows, one geometry

Study Of the Turbulent Flow Structure in an Annular Space with Inter-rod Gapping

Kristin Newlands Dr S. Benhamadouche, Professor S. He, Dr Y.Guo

2nd April 2014

The University Of Sheffield.

Code_Saturne User Meeting

Motivation

A fundamental investigation using LES of the flow structure between fuel rods as a potential source of the flow induced vibration phenomenon within the fuel elements of a **nuclear** reactor

Computational Details

Wall resolved LES \rightarrow No wall function X Dynamic Smagorinsky sub-grid scale model ($v_{sas} > O$) Eddy

- 2nd order schemes in space and time:
 - pure centred in space
 - mix of Crank-Nicolson and Adams-Bashforth in time
- ×× CFL number < 1
- $\text{Re} = (U_{bulk} \times D_{rod}) / v \approx 12000$ ×

3 Configurations considered:

Basic annulus $(\mathbf{1})$

Simulation

- **Concentric Configuration** (2)
- **Eccentric Configuration** 3

Larg

- ① Periodic
- 2 Precursor
 - Couple two domains
 - Specify velocity from periodic domain to the Inlet
- 3 Recycling

NIVERSITY

- Map velocity from a downstream plane to the Inlet
- Rescale by Q_{in}/Q_{cyc}
- \diamond Initialisation by SEM used in all 3 cases

- Basic annulus used for inlet method comparison
- Good agreement with DNS by Chung *et al.* using periodic boundary conditions

- Excellent agreement between first and second order statistics
- $\begin{tabular}{ll} \label{eq:Friction} & Friction Coefficient shows development region <2\delta from the inlet \end{tabular}$

- Certain budget terms show an adjustment section close to the inlet
- Precursor and Recycling method feature the same trends
- Profiles from other budget terms show excellent agreement

Concentric Gap Case

- 1. **"6D case"**: $L_{gap} = 6 \times D_{rod}$ 2. **"2D case"**: $L_{gap} = 2 \times D_{rod}$
- Fully conforming hexahedral, blockstructured grid

Schematic diagram of computational domain

Concentric Gap Case

Flow statistics

X

OF ABERDEEN

- ♦ Flow is axisymmetric \rightarrow Average in time and in the azimuthal direction
- ♦ $\Delta t_{ave} \approx 10$ and 30 flow through times

Sheffield.

Concentric Gap Case

2D Case

6D case

Mean Axial Velocity – 2D case

[∞] Two distinct flow regions

OF ABERDEEN

- \gg Strong interaction between main flow and gap flow
- 🕸 Strong flow reversal in the gap
- \gg Flow pattern is analogous to flow over *d*-type roughness

Velocity Particle Trajectories in gap

z/D_{rod}

Mean Axial Velocity – 6D

- $\ensuremath{\overset{\otimes}{\approx}}$ New flow development in gap
- Recirculation length in proximity of upstream rod $\approx 1.5 \times D_{rod}$

z/D_{rod}

- 🕸 Significant separation bubble along downstream rod
- * Flow pattern is akin to flow over *k*-type roughness

y/D_{rod}

Streamwise Turbulence Intensity

2D Case

- $^{\circledast}$ Main flow remains wall shear flow throughout
- Shear layer at the interface is maintained for a short distance into the gap and then new turbulence is generated
- $^{\circledast}$ New turbulence is generated along the edge of the second rod

Streamwise Turbulence Intensity

6D case

- * Wall shear flow continues for a short distance \rightarrow wall jet
- $^{\otimes}$ In the gap, initial jet flow is replaced by newly developed flow
- Strong turbulence is generated along the edge of the second rod as flow reenters the annulus

Reynolds Shear Stress

Axial Fluctuating Velocity

Different flow behaviour at equivalent axial locations relative to the upstream rod

Eccentric Gap Case

Concentric

Eccentric

y/D_{rod}

Of

Sheffield.

Streamwise Turbulence Intensity

UNIVERSITY OF ABERDEEN

Eccentric Gap Case

- Pressure fluctuations within the fluid domain and corresponding pressure force along the rods
 - ♦ Greater pressure force in eccentric configuration
 - ♦ Preliminary observations. Next step is to quantify and investigate the effect of the larger streamwise gap.

Conclusions

Implemented *Precursor* and *Recycling* inlet methods in *Code_Saturne* v2.0

- $\diamond~$ Both methods recover the periodic base flow within a distance of 2\delta
- Investigated turbulent flow structure in a concentric annular configuration
 with 2 streamwise gap lengths. The geometry considered features:
 - ♦ Wall shear flow in annular region
 - ♦ Cavity flow in the 2D gap case
 - ♦ Wake flow in the 6D gap case
- Preliminary qualitative results
 with the addition of eccentricity
 to the downstream rod

Iso-surface of λ_2 for larger gap length

The End

Thank you for listening

Any questions?

Or suggestions?

