

Application of the new turbo-machinery module to a mixed compressor and in-situ visualisation.

$\frac{\text{S. Rolfo}^{1}, \text{ B. Lorendeau}^{1}}{\text{C. Moulinec}^{1}, \text{ D. R. Emerson}^{1},}$

¹STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK stefano.rolfo@stfc.ac.uk

April 2nd 2014


2 Code_Saturne in-situ visualization (B. Lorendeau)

Acknowledgements

The authors are grateful to the *Code_Saturne* development team in EDF R&D and particularly to Y. Fournier and A. Ribes.

2 *Code_Saturne* in-situ visualization (B. Lorendeau)

ROLFO et al. Code_Saturne User Meeting

Rotating pipe: Test case description

Flow parameter

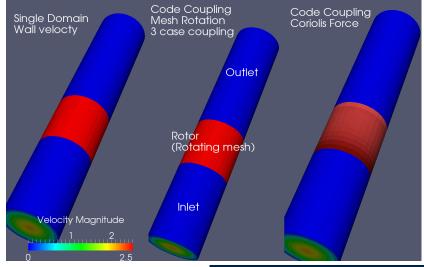
- Laminar flow Re = 500 (based on diameter and inlet bulk velocity)
 - Fully developed laminar inlet (parabolic profile)
- Middle section rotating at rotation rate $\alpha = V_{\theta}/U_B = 2.5$

Calculations definition

- Single domain with imposed wall velocity
- Code-Code coupling with 3 instances and sliding plane
 - Mesh rotation
 - Coriolis source force
- Turbo-machinery module with mesh joining
 - Mesh rotation and gluing at every time step
 - Coriolis source force with mesh joining at the start of the simulation
- Mesh with 256 cells in the cross section for 56 planes in the steamwise direction, for total length of 5*D*

Rotating pipe: Test case description

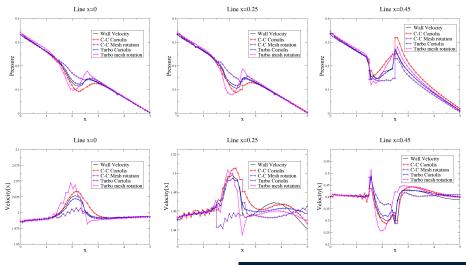
Flow parameter


- Laminar flow Re = 500 (based on diameter and inlet bulk velocity)
 - Fully developed laminar inlet (parabolic profile)
- Middle section rotating at rotation rate $\alpha = V_{\theta}/U_B = 2.5$

Calculations definition

- Single domain with imposed wall velocity
- Code-Code coupling with 3 instances and sliding plane
 - Mesh rotation
 - Coriolis source force
- Turbo-machinery module with mesh joining
 - Mesh rotation and gluing at every time step
 - Coriolis source force with mesh joining at the start of the simulation
- Mesh with 256 cells in the cross section for 56 planes in the steamwise direction, for total length of 5D

Rotating pipe: Test case view



ROLFO et al.

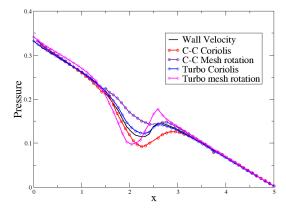
Code_Saturne User Meeting

Science & Technology Facilities Council

Comparison: Profiles along flow direction

ROLFO et al.

Code_Saturne User Meeting

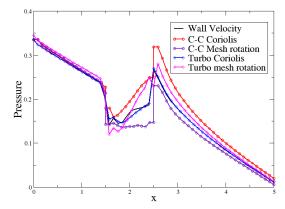


Profiles along flow direction

Line x=0

• C-C coupling with mesh rotation less sensitive to the rotation

- Turbo module with mesh rotation enhance the effect of the outlet interface
- Turbo module with frozen rotor is the closest to the imposed wall velocity
- Both methods with mesh rotation show fluctuations up-stream and in the rotor



Profiles along flow direction

Line x=0.45

• C-C coupling with mesh rotation less sensitive to the rotation

- Turbo module with mesh rotation enhance the effect of the outlet interface
- Turbo module with frozen rotor is the closest to the imposed wall velocity
- Both methods with mesh rotation show fluctuations up-stream and in the rotor

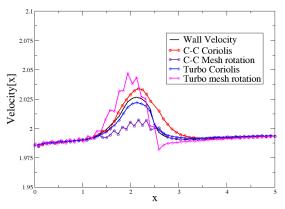
Profiles along flow direction

Line x=0

- Wall Velocity C-C Coriolis 0.3 C-C Mesh rotation → Turbo Coriolis Turbo mesh rotation Pressure 0.1 х
- C-C coupling with mesh rotation less sensitive to the rotation
- Turbo module with mesh rotation enhance the effect of the outlet interface
- Turbo module with frozen rotor is the closest to the imposed wall velocity
- Both methods with mesh rotation show fluctuations up-stream and in the rotor

Profiles along flow direction

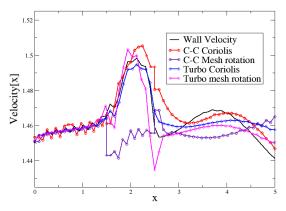
Line x=0


- Wall Velocity C-C Coriolis 0.3 C-C Mesh rotation → Turbo Coriolis Turbo mesh rotation Pressure 0.1 х
- C-C coupling with mesh rotation less sensitive to the rotation
- Turbo module with mesh rotation enhance the effect of the outlet interface
- Turbo module with frozen rotor is the closest to the imposed wall velocity
- Both methods with mesh rotation show fluctuations up-stream and in the rotor

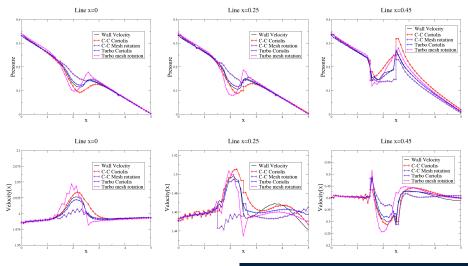
Profiles along flow direction

Line x=0

- C-C coupling with mesh rotation less sensitive to the rotation
- Turbo module with mesh rotation enhance the effect of the outlet interface
- Turbo module with frozen rotor is the closest to the imposed wall velocity
- Both methods with mesh rotation show fluctuations up-stream and in the rotor



Profiles along flow direction


Line x=0.25

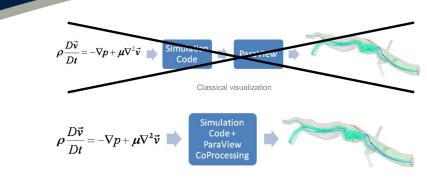
- C-C coupling with mesh rotation less sensitive to the rotation
- Turbo module with mesh rotation enhance the effect of the outlet interface
- Turbo module with frozen rotor is the closest to the imposed wall velocity
- Both methods with mesh rotation show fluctuations up-stream and in the rotor

Science & Technology Facilities Council

Comparison: Profiles along flow direction

ROLFO et al.

Code_Saturne User Meeting



2 Code_Saturne in-situ visualization (B. Lorendeau)

ROLFO et al. Code_Saturne User Meeting

In-Situ Visualization

In-situ or coprocessing visualization

Integration of Catalyst into Code_Saturne

- Tightly coupled solution
- Designed for tackling bad I/O performances
- Allows users to visualize their data at simulation-time

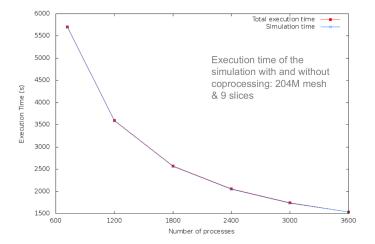
How to use it

Play the video

ROLFO et al. Code_Saturne User Meeting

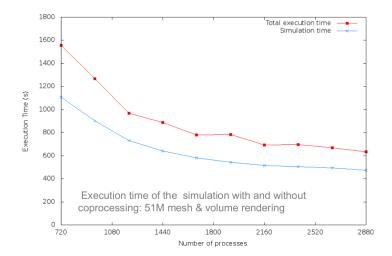
Advantages & Downsides

Advantages


Faster simulation Video generation Reduction of data volume Visualize during simulation

Downsides

Not for exploration Limited Interactivity Memory usage



Performances on 200M

Performances on 50M

ROLFO et al.

Comparison Charts

Future Work

Integration of Catalyst into Code_Saturne

- Makes simulation and visualization works together
- runs a pre-defined VTK pipeline on the simulation data
- Scaling and processing time very satisfactory
- Memory management being optimized
- Further tests on BlueGene Q with 500 millions of hexaedrons
- Further tests on the Live Visualization