
LATEST NEWS
AND PROSPECTS
IN Code_Saturne

From version 3.0 to 3.3, on the road to 4.0

April 2 2014

| 2

Code_Saturne versioning scheme reminder

Code_Saturne user ’s meeting | 04/2014

 From version 2.0 on, different kinds of versions “x.y.z” are released
 Production version every two years (x increasing)

• With the release of a Verification & Validation summary report

 An intermediate version every six months (y increasing)
• With non-regression tests to ensure the code quality

 Corrective versions when needed (z increasing)
• To make sure the users are provided with bug fixes and ports
• XML and user subroutines remain compatible, so upgrading is encouraged

br
an

ch
es

2.0.1 2.0.2

trunk 2.1 2.2 2.3 3.0 4.0

2.0.z
3.0.1

2.1.1

2.2.1
2.3.1

2.0

| 3

Code_Saturne version history

 Pre-open source versions
 1998: prototype (long time EDF in-house experience, ESTET-ASTRID, N3S, ...)

 2000: version 1.0 (basic modeling, wide range of meshes)
• 2001: Qualification for single phase nuclear thermal-hydraulic applications

 2004: version 1.1 (complex physics, LES, parallel computing)

 2006: version 1.2 (state of the art turbulence models, GUI)

 Open source (GPL) versions (retired, old stable, stable, intermediate)

 2008/11: version 1.3 (massively parallel, ALE, code coupling, ...)
• 2008/11: version 1.4 (parallel I/O, multi-grid, atmospheric, cooling towers, ...)

 2010/08: version 2.0 (parallel joining, code coupling, easier install, extended GUI)
• 2011/10: version 2.1 (parallel mesh partitioning, dynamic memory, improved scripts, coupling with Syrthes 4)
• 2012/03: version 2.2 (EBRSM, ALE improvements)
• 2012/07: version 2.3 (many physical model additions, Cp handling, BC formulation changes, coupled velocity)

 2013/03: version 3.0 (AFM, DFM thermal wall laws)

• 2013/06: version 3.1 (Lagrangian additions and post-processing, k-ω robustness, radiative quadratures)
• 2013/12: version 3.2 (Joining-based rotor-stator, Lagrangian coal combustion, atmospheric chemistry)

Code_Saturne user ’s meeting | 04/2014

| 4

Code_Saturne version 3.0

 Released March 22, 2013
 Just before last year’s user meeting
 Now at patch release 3.0.3

• 3.0.4 will be released very soon

 Check NEWS file to see if you should upgrade
• http://code-saturne.org/viewvc/saturne/branches/Version3_0/

 Described in detail in 2013 user meeting

PRODUCTION VERSION

 Current stable
• recommended for most studies

under quality assurance
• will become “old stable” when

version 4.0 is released (April 2015)
• will be maintained until release of

version 5.0 (2017)

 Old stable is 2.0
• will be retired when 4.0 is released

(April 2015)

Code_Saturne user ’s meeting | 04/2014

| 5

Code_Saturne Version 3.1 (1/4)

 Released June 2013
 shortly after version 3.0
 contains mainly developments that could have gone into 3.0, but did not make it in time

before feature freeze

 General changes
 documentation updates
 improve k-ω robustness with low y+

• fixes longstanding bug, detectable on diffuser test case
– versions 1.3 and 2.0 forced relaxation to work around this, at the expense of unsteady computations
– version 3.0 identified the issue, forcing relaxation only in affected cases

» fix is not merged into 3.0, as it is deemed too intrusive

 hybrid parallelism (OpenMP)
• add numbering options for threads

 optional support for NEPTUNE’s Equations of State Library

 radiative model
 add new S4 S6 S8 and Tn quadratures

Code_Saturne user ’s meeting | 04/2014

| 6

Code_Saturne Version 3.1 (2/4)

 Coal combustion
 increase max coals to 5, add coke composition
 remove old coal combustion model

 add a drift model
 first used for coal combustion
 general framework (radionuclide transport, …)

Code_Saturne user ’s meeting | 04/2014

| 7

Code_Saturne Version 3.1 (3/4)

 GUI and scripts
 prepare for Windows (with features useful for all, and essential to windows population)

• handle whitespace in paths
• cases may now be created (not just edited) directly from the GUI

 using CFD_Study, display the monitoring points on the SALOME VTK viewer

 Lagrangian model
 add zero-flux particle boundary condition to be applied with Eulerian symmetries.
 with combustion, use a formulation of the coal

density local to a particle and improve the numerics.
 add a particle resuspension model.
 implement a wall law for fluid velocity, k and ε for

the deposition sub-model
 implement a BC based on the DLVO theory
 full rewrite of the postprocessing output

• now based on the standard mechanisms ;
no restrictions for parallel runs

• trajectories are now really usable
Code_Saturne user ’s meeting | 04/2014

| 8

Code_Saturne Version 3.1 (4/4)

 Autovnv improvements
 global postprocessing
 prescribe results name,
 many other useful additions

 Automatic installer changes
• The installer is now in the top-level directory, and does not download Code_Saturne anymore

– download code sources code_saturne_x.y.z.tar.gz file first, the installer is inside

• The setup file template is generated by a first call to install_saturne.py.
• MPI should now be installed upstream, but PT-SCOTCH and ParMetis are now handled.

 For more details, see NEWS file in:
 http://code-saturne.org/viewvc/saturne/branches/Version3_1/

Code_Saturne user ’s meeting | 04/2014

| 9

Code_Saturne Version 3.2 (1/6)

 Released December 2013

 General changes
 Remove uncoupled velocity solver (ivelco = 0), deprecated since version 3.0
 add a new Boundary Condition

type for free inlet
• can be used for natural

convective flows in free
atmosphere for instance
(plumes, flame, etc.).

 Turbulence:
• Major change in Rij-epsilon models:

– the Daly Harlow model on the diffusive term is now by default for SSG
– the GGDH brick is used for all the models (LRR, SSG, EBRSM)
– the "diffusivity_tensor" is added as a field key word
– Rij-epsilon routines are cleaned up and documented using Doxygen.

 Turbomachinery modeling:
 add a rotor-stator model based on mesh joining.

• see specific presentations on this subject today

Code_Saturne user ’s meeting | 04/2014

| 10

Code_Saturne Version 3.2 (2/6)

 Thermal model
 the thermal model is now defined by the "itherm" keyword/variable, which replaces
iscsth(iscalt).
• In the case of temperature, the scale used is defined by a separate variable (itpscal).

For additional user scalars, a new array iscacp is defined, such that iscacp(iscal) defines
whether the scalar behaves like a temperature, so the possibility of modeling multiple passive
"temperatures" is not lost.

 This change allows for better consistency between the standard and specific
physics, as the thermal variable is now always a "model" scalar, and user scalars
remain separate.
• so nscapp = 1 using a thermal model but no specific physical model
• It also allows better consistency between the GUI and user subroutines logic
• It also allows querying

the thermal model with
one less indirection.

Code_Saturne user ’s meeting | 04/2014

| 11

Code_Saturne Version 3.2 (3/6)

 Atmospheric module:
 add gazeous chemistry models.
 plug the SIze REsolved Aerosol Model (SIREAM).
 see general presentation on atmospheric module today

 Particle tracking module:
 add a modeling of the drying phase of the coal particle combustion
 add a new boundary condition to simulate coal fouling mechanism
 implementation of a particle discretization in the coal combustion model:

• backwards compatibility is ensured (set nlayer = 1)
• computation of intra-particle thermal gradients
• adaptation of chemical source terms to temperature discretization
• reworked the particle injection for coal (clear difference between standard and user-defined coal

composition)
• adapted the particles and trajectories export routines to be able to output variable information for a

specific layer

Code_Saturne user ’s meeting | 04/2014

| 12

Code_Saturne Version 3.2 (4/6)

 Compressible module:
 change the compressible algorithm from a density formulation to a pressure formulation
 merge the compressible algorithm with the coupled velocity components algorithm
 adapt standard operators (codits, bilsc*) in order to make them compatible with the

compressible algorithm
 implement analytical flux boundary condition

• plus a new total enthalpy / total pressure boundary condition with a fixed point algorithms,
generalization of the subsonic outlet

 new set of BC coefficients for the convection operator for compressible flows
 density is now a property only, not a solved variable

 Coal combustion module:
 added new NOx model for coal combustion;
 introduction of the coal thermal conductivity

• for the calculation of intra particle gradients in particle-tracking module

Code_Saturne user ’s meeting | 04/2014

| 13

Code_Saturne Version 3.2 (5/6)

 Documentation
 moved tutorials outside the codebase

• this allows looser synchronization with the code base, as tutorials may be updated somewhat less
frequently

• for non-EDF users, pdf’s are available on the web site; to contribute, please contact us

 Progress in Doxygen documentation
• Fortran modules
• user examples
• Fortran routines
• install Doxygen documentation from tarball (as built by "make dist")

 Post-processing
 Added experimental ParaView Catalyst co-processing output option

• developed with the SALOME visualization team
• see STFC presentation today

 for CFD_Study
• update to PARAVIS instead of VISU.

Code_Saturne user ’s meeting | 04/2014

| 14

Code_Saturne Version 3.2 (6/6)

 Programming changes
 moved to PyQt API 2 to plan for future Python version upgrades

• leads to some issues in complex combinations, such as with SALOME, so version 3.3 will add a
compatibility layer to handle both API 1 and API 2

 replaced propfa and propfb arrays by distinct fields
• use field_get_val_... functions to access values
• for cell properties, more work remains before propce may be removed, but use of field API is

recommended to avoid requiring future changes

 added cs_c_bindings.f90 module for general definitions of C bindings
• For large modules, it is recommended to use separate files (see field.f90 and post.f90 for

example), but for smaller modules, this avoids requiring the definition of specific module files

 added cs_field_pointer API for quick access to main fields from C
 moved the convection-diffusion balance (bilsc2.f90) to C

 For more details, see NEWS file in:
 http://code-saturne.org/viewvc/saturne/branches/Version3_2/

Code_Saturne user ’s meeting | 04/2014

| 15

Code_Saturne Version 3.3 (1/2)

 Version 3.3 to be released late April 2014
 Automated test cases will be run

 Lagrangian module
 Improvements in roughness and

resuspension models
• added a user keyword for roughness surface

(calculation of the energy barrier in the case of
rough wall)

• consideration of the electrostatic force in the
adhesion force for the resuspension

• mass flux update for particles rolling on the wall

 Atmospheric module
 Add imbrication module (boundary

condition coefficients interpolation)

 Rewrite of temporal moments handling.
 Moments handling is now more modular,

and allows for variances in addition to
means.

 Numerically stable recurrence relations
are used to update moments, whose
values are now directly usable at any given
time.
• Weight accumulators are handled inside the

module, and not seen as fields anymore.

 Also, support for user functions is added.
 Currently, this is mapped to the legacy

data setup, and tested only in this context,
but the added functionality will be exposed
with future changes in case setup.

Code_Saturne user ’s meeting | 04/2014

| 16

Code_Saturne Version 3.3 (2/2)

 Code Architecture
 Sharing in C of many Fortran keywords
 Migration to C of many finite volume

operators
• allows for future increased sharing of code with

NEPTUNE_CFD
• C’s local variable declarations allow for safer

OpenMP hybrid parallelism deployment
• handling of structures is much simpler
• handling of optional arguments is much simpler

and safer
– test for NULL

• easier for many tools, such as Doxygen and
debuggers

 For further details, browse
 http://code-saturne.org/viewvc/saturne/trunk

 or checkout the code
 git svn clone \

http://code-saturne.org/svn/saturne/trunk \
code_saturne

Code_Saturne user ’s meeting | 04/2014

http://code-saturne.org/viewvc/saturne/trunk�
http://code-saturne.org/svn/saturne/trunk�

| 17

On the road to Code_Saturne 4.0

 4.0 feature freeze with branching of version 4.0 in November 2014
 branch will be known as “4.0 beta”, until it is deemed ready for “4.0 release candidate”

status
• all test cases must run successfully to come out of beta
• snapshots will be released regularly (every 2 weeks or so)
• when 4.0.0 is released, support for beta and rc versions is discontinued

 Focus on verification and validation
 version 3.0 brought versioned test case setups and automated runs
 version 4.0 will leverage those tests, which are run frequently in the development

process
• in general, the earlier a bug is detected, the less costly it is to fix it

– and the less time it has to annoy users

 Distributed inside EDF as part of SALOME_CFD

Code_Saturne user ’s meeting | 04/2014

| 18

On the road to Code_Saturne 4.0

 Feature list not frozen yet, but should include
 postprocessing output improvements

• rewrite of probes and profiles output, using a consistent writer / submesh paradigm
• zone-based balance computation and extraction

 additional physical models
 additional HPC oriented features

• optional use of external linear solver packages (targeting PETSC)
• more cache and thread-friendly mesh numbering
• deployment of hybrid MPI-OpenMP builds

– already functional today, but need more systematic testing within the AutoVnV framework

 And after that ?
 Additions to code structure to prepare for new

numerical schemes may start
appearing shortly after 4.0
• will require time and effort, so start as early as possible

Code_Saturne user ’s meeting | 04/2014

| 19

SALOME_CFD

 Code_Saturne and SYRTHES are already
well integrated with the SALOME platform
 CFD_STUDY is the main GUI entry point for

Code_Saturne and NEPTUNE_CFD
 SYRTHES also has a SALOME component

 SALOME_CFD aims to be a complete CFD platform
 at least SALOME, Code_Saturne, SYRTHES
 NEPTUNE_CFD for EDF internal builds
 other SALOME modules, such as ADAO and OpenTurns

• exact list not fixed yet; possibly also JobManager and HOMARD

 What does this mean for Code_Saturne users ?
 version releases synchronized (since 2013)
 For EDF users

• On workstations, Code_Saturne 4 will be distributed as part of SALOME_CFD
– users will thus immediately have a more complete, preconfigured environment, rather than chasing packages

• No change for clusters

Code_Saturne user ’s meeting | 04/2014

| 20

Organisation

 New internal EDF quality assurance manual to be released soon
 clarifies roles of core development team and contributors
 builds on identified best practices

• based on feedback of the last couple of years, versus older projects

 We realize we ask more of contributors than several years ago
 with more users and developments, integration work needs to be spread to more

people, or better prepared by contributors.
 The old way of doing things did not scale

• at least not without proportionately increasing the development team
• or integrating unrevised code

– would lead to rapid accumulation of technical debt and skyrocketing support issues 1 to 3 years later

 To help with this, we added a 1 day developer’s course this year
 1st “test” session in 2014

• thanks to our participants for their patience for this first try

 expect 1 session per year
• we’ll be happy to help you make the best use of the code

Code_Saturne user ’s meeting | 04/2014

THANK YOU

| 22

Reminder:
best practices to cope with version changes
 GUI vs. user subroutines

 GUI advantage: mostly automatic update
from one version to the next

 User subroutine advantage: slightly less
layers, so slightly lower risk of bugs
• we are progressively aligning user subroutines

with the GUI logic so as to make these layers
thinner, and avoid GUI translation bugs
altogether.

 Recommended approach
 do as much as possible using the GUI, and

only the rest using user subroutines
• for example, for a complex inlet boundary

condition, you may define all conditions using
the GUI, except the complex one
– reducing the size of the code that may need

updating
– enhancing its readability

 Validation test cases are versioned
 Updated regularly
 EDF intranet only

Code_Saturne user ’s meeting | 04/2014

	Latest news and prospects in Code_Saturne
	Code_Saturne versioning scheme reminder
	Code_Saturne version history
	Code_Saturne version 3.0
	Code_Saturne Version 3.1 (1/4)
	Code_Saturne Version 3.1 (2/4)
	Code_Saturne Version 3.1 (3/4)
	Code_Saturne Version 3.1 (4/4)
	Code_Saturne Version 3.2 (1/6)
	Code_Saturne Version 3.2 (2/6)
	Code_Saturne Version 3.2 (3/6)
	Code_Saturne Version 3.2 (4/6)
	Code_Saturne Version 3.2 (5/6)
	Code_Saturne Version 3.2 (6/6)
	Code_Saturne Version 3.3 (1/2)
	Code_Saturne Version 3.3 (2/2)
	On the road to Code_Saturne 4.0
	On the road to Code_Saturne 4.0
	SALOME_CFD
	Organisation
	Diapositive numéro 21
	Reminder:�best practices to cope with version changes

