A seamless hybrid RANS-LES model based on transport equations for the subgrid stresses and elliptic blending

Атавак FADAI-GHOTBI **Christophe FRIESS** Rémi MANCEAU Jacques BORÉE

Laboratoire d'Etudes Aérodynamiques UMR 6609 CNRS/Université de Poitiers/ENSMA Poitiers, France

CODE SATURNE USER'S CLUB

December 2008

Introduction

- Unsteady information crucial in industry: fluid/structure interaction, thermal fatigue, noise => prediction of characteristic frequencies and energy contained in the dominant structures
- 3 major axis of simulation:
 - DNS: resolve all scales \implies 3D unsteady accurate solution, but unaffordable for industrial problems
 - LES: resolve large scales and model small scales. But QDNS mode in the near wall zone \implies high CPU cost
 - RANS: model all scales \implies low CPU cost but steady solution
- Lots of unsteady low cost approaches, between RANS and LES:
 ⇒ hybrid RANS-LES: VLES (Speziale 1998), LNS (Batten et al. 2002), DES (Spalart 2000), PITM (Schiestel & Dejoan 2005), ...

 \implies other approaches: SDM (Kourta & Ha Minh 1993), SAS (Menter & Egorov 2005), URANS (Iaccarino et al. 2003), ...

Introduction on hybrid RANS-LES models

Two types of hybrid approaches :

- imposed frontier: easier to model but complex coupling between RANS and LES zones
- seamless (continuous transition): simpler in practical applications, but modelling problems

- Spectral theory of turbulence: formal framework consistent for hybrid seamless models
- Compatible with the two extreme limits RANS and DNS: transition parameter ?
- Location of the cutoff in the productive $zone \implies production and redistribution$
- Decrease the CPU cost (coarser mesh)

Main steps

- Provide a theoretical framework to the separation resolved/modelled scales \implies PITM approach (Schiestel & Dejoan 2005, Chaouat & Schiestel 2005)
- Based on transport equations for the subgrid stresses
 - \implies production and redistribution when the cutoff is in the energetic part of the spectrum
- Use of the near-wall RANS Elliptic Blending Reynolds Stress Model (Manceau & Hanjalić 2002, Manceau 2005)

PITM model

(Schiestel & Dejoan 2005, Chaouat & Schiestel 2005)

- Decomposition: $U_i^* = \underbrace{\tilde{U}_i(\mathbf{x},t)}_{\text{filtered velocity (resolved)}} + \underbrace{u_i''(\mathbf{x},t)}_{\text{residual fluctuation}}$
- Filtered velocity obtained by convolution product: $\tilde{U}_i = \langle U_i^* \rangle = F_{\Delta_S} * U_i^*$
- Spectral cutoff to separate resolved scales $[0, \kappa_c]$ and modelled scales $[\kappa_c, \infty]$
- Filtered equations (Germano 1992):

$$\frac{\tilde{D}\tilde{U}_i}{\tilde{D}t} = -\frac{1}{\rho}\frac{\partial\tilde{P}}{\partial x_i} + \nu\frac{\partial^2\tilde{U}_i}{\partial x_j\partial x_j} - \frac{\partial\tau_{ij}}{\partial x_j}$$

$$\frac{\tilde{D}\tau_{ij}}{\tilde{D}t} = D_{ij}^{T} + D_{ij}^{\nu} + \phi_{ij} + P_{ij} - \varepsilon_{ij}$$
(2)

 $\tau_{ij} = \langle U_i^* U_j^* \rangle - \langle U_i^* \rangle \langle U_j^* \rangle$: characterizes the influence of the filtered (small) scales on the resolved (large) scales

(1)

- Aim: retrieve the classical form of the RANS equation for ε + modify the coefficients to characterize only the modelled scales
- 3 zones: $[0, \kappa_c], [\kappa_c, \kappa_d], [\kappa_d, \infty]$. Integration of the energy spectrum equation on $[\kappa_c, \kappa_d]$ gives the evolution of $k_m = \frac{1}{2}\overline{\tau_{ii}}$:

6/17

Subgrid scale model : EB-RSM

(Manceau & Hanjalić 2002, Manceau 2005)

- Inspired by Durbin's elliptic relaxation theory (1991), taking into account the inviscid and non-local blocking effect of the wall
- Simpler (only 1 more elliptic equation to resolve, instead of 6)

$$\alpha - L_{SGS}^2 \nabla^2 \alpha = 1 \tag{6}$$

EB-RSM model blends the near-wall and far from the wall variables ($\varepsilon_{ij} \& \phi_{ij}$) as:

$$X_{ij} = (1 - \alpha^2) X_{ij}^w + \alpha^2 X_{ij}^h$$
(7)

- No more explicit dependency on distance to the wall ⇒ useful in complex geometries
- Valid in unsteady approaches (same asymptotic behaviour + non-local effect)
- Easy to implement in an existing code + robust

Choice of the length scale of wall effects

Blocking effect: consequence of the incompressibility of the fluctuating field \implies in the hybrid context, blocking effect must be imposed only on the modelled scales $\implies L_p \searrow$

$$\alpha - L_{SGS}^2 \nabla^2 \alpha = 1$$

• EB-RSM in the RANS framework:

$$L_p = C_L \max\left(\frac{k^{3/2}}{\varepsilon}, C_\eta \frac{\nu^{3/4}}{\varepsilon^{1/4}}\right)$$

• EB-RSM in the hybrid framework:

$$L_{SGS} = C_L \max\left(\frac{k_{SGS}^{3/2}}{\varepsilon}, C_\eta f_k^{3/2} \frac{\nu^{3/4}}{\varepsilon^{1/4}}\right)$$
(10)

 \implies consistent with both RANS $(L_{SGS} \rightarrow L_p)$ and DNS $(L_{SGS} \rightarrow 0)$ limits

8/17

(8)

(9)

Choice of $f_k = k_{SGS}/k$

Using Kolmogorov's law for the spectrum: $f_k(\mathbf{x}, t) = (C\kappa_c L)^{-2/3}$ Not consistent with the RANS limit $(f_k = 1)$ at the wall \Longrightarrow need for a blended formulation

$$f_k = (1 - \alpha^2) + \alpha^2 (C \kappa_c L)^{-2/3}$$

Transition RANS / LES is controlled by

- mesh size $(\kappa_c = \pi/\Delta)$
- distance to the wall (implicitly contained in α)

Numerical aspects

Calibration in channel flow at $Re_{\tau} = 395$. Box size $4H^*H^*2H$, cartesian mesh

N_{cell}	Δx^+	Δz^+	Δy_1^+	Δy_c^+
55 296	100	50	3	40

Coarse mesh, in the sense of classical LES.

Discretization and schemes :

- Time : $\Delta t^+ = 3.5 \ 10^{-6}$; Crank-Nicholson (2nd order)
- Space :
 - centered (2nd order) for velocities
 - upwind (1st order) for subgrid stresses

PITM and unsteadiness issues

Macro-fluctuations of strain-rate \implies PITM model unable to respond \implies any calculation degenerates to a steady solution Ideas :

- Smooth strain fluctuations, e.g. by averaging source terms in homogeneous directions (x,z)
 - strain-rate
 - production
 - rotation-rate

 \rightarrow First approach, easy to implement, but physically unjustified (averaging of production...)

- Dynamical approach: to better pilot k_{SGS} and thus f_k
 - change $C^*_{\varepsilon 2}$: to avoid increasing of k_{SGS} , $\varepsilon \nearrow$, e.g. by $C^*_{\varepsilon 2} \searrow$
 - \rightarrow Physically better, but sophisticated and still empirical

 τ_{12}^{+}

 f_k

• Erroneous anisotropy (τ_{11} overestimated, τ_{22} underestimated)

 k^+

f_k observed *a posteriori* is lower than the *f_k* applied *a priori* ⇒ peak of resolved energy in the buffer layer, showing the necessity to better control *f_k*

Dynamical approach

<u>AIM</u>: Keep the **observed** rate of modelled turbulent kinetic energy f_k^o close to its **target**, f_k^t

$$f_k^o = \frac{\overline{k_{SGS}}}{\overline{k_{SGS}} + \overline{k_{LES}}} = \frac{\overline{k_{SGS}}}{\overline{k_{TOT}}}$$
(11)
$$f_k^t = (1 - \alpha^2) + \alpha^2 (C\kappa_c L)^{-2/3}$$
(12)

Idea : Control k_{SGS} by modifying $C^*_{\varepsilon 2} \Longrightarrow \delta C^*_{\varepsilon 2}$ function of the gap between f^o_k and f^t_k

The analysis suggests:

$$\delta C^*_{\varepsilon 2} = \aleph(\frac{f^t_k}{f^o_k} - 1), \aleph > 0 \tag{13}$$

 $f_k^o = f_k^t \Longrightarrow \delta C^*_{\varepsilon 2} = 0 \; ; \qquad f_k^o > f_k^t \Longrightarrow \delta C^*_{\varepsilon 2} < 0 \; ; \qquad f_k^o < f_k^t \Longrightarrow \delta C^*_{\varepsilon 2} > 0$

Results with the dynamical approach (1/2)

 τ_{12}^{+}

Results with the dynamical approach (2/2)

- Velocity profile improved, but slightly underestimated in the log-zone
- Peaks of turbulent stresses better predicted, but still wrong anisotropy towards the center of the channel
- $f_k^o \approx f_k^t$

Conclusions

- The spectral partitionning gives a consistent formal framework to bridge RANS, LES and DNS in a continuous manner
- Use of transport equations for τ_{ij} to take into account production and redistribution when the cutoff is in the productive zone of the spectrum \implies LES on coarse mesh
- Encouraging results:
 - Transition well represented ; SGS part dominant near the wall
 - With the modified $C_{\varepsilon 2}^*$ procedure, peaks of total turbulent stresses are well predicted, showing the validity of the EB-RSM in a hybrid context
- Need validation on finer meshes (comparison with LES, on typical meshes)
- Further work : higher Reynolds number + rotating channel + separated flows