Computational Investigation of Buoyancy Influenced Flows and Benchmarking exercise

Presenter: Yacine Addad (PDRA)
(KNOO Team: D. Laurence, M. Cotton, A. Keshmiri, S. Rolfo) (Collaborators: S. Benhamadouche, R. Howard, F. di Mare)

School of Mechanical, Aerospace \& Civil Engineering (MACE)
The University of Manchester

Buoyancy aided heated pipe flow

Gr/Re**2 $=0.087$ (relaminarization)

-Launder \& Sharma Model (CONVERT)

- Manchester $\mathbf{v}^{2} \mathbf{f}$ Model (Code-Saturne)
- Large Eddy Simulation (STAR-CD)
$v^{2} \mathrm{f}$ Model (STAR-CD)
$-v^{2} f$ Model (Code-Saturne)
- $-\omega-\omega$-SST Model (STAR-CD)
k- ω-SST Model (Code-Saturne)
DNS of You et al (2003)

Test Case Description

- $\mathrm{Re}=180$ based on R and u_{τ}.
- Boussinesq Approximation.
- Periodic Flow.
- Lz=30R
- Grid1: 1.61 million
- Grid2: 4.83 million
- Grid1 Resolution: $\Delta r^{+}{ }_{\text {min }}=1.0$, $\Delta \phi^{+}=6.28, \Delta z^{+}=18$.
- Grid2 Resolution: $\Delta r^{+}{ }_{\text {min }}=1.0$, $\Delta \phi+=6.28, \Delta z+=7.03$.

Ratio of SGS to molecular viscosity

Keeping the Nuclear Option Open

Nusselt number as a function

 of the buoyancy parameter
from You et al.

For RANS models predictions, see the paper by Amir Keshmiri et al.

Case1: Forced convection $\mathrm{Gr}^{\prime} \mathrm{Re}^{2}=0.0$

Data normalized by the bulk velocity

Buoyancy effects on turbulence in VHTR chanhers V/R-LES

Cases from $\mathrm{Gr} / \mathrm{Re}^{2}=0.063$ to $\mathrm{Gr} / \mathrm{Re}^{2}=0.241$ keeping the Nuclear option Open

LES Grid (Case1)

- $\mathrm{Ra}=4.16 \times 10^{8}$
- NCELL= 3 million
- Boussinesq approximation
- $\mathrm{Pr}=0.71$ (Air)
- $\alpha=5^{\circ}$

Cold wall
Plan Y-Z

LES RESULTS

$Q=0.05$

Low-Re. models tested:
-k- ε Lien et al. (1996)
-k- ω Wilcox (1998)
-k- ω SST Menter (1993)

- V^{2}-f Lien \& Durbin (1996)

- Buoyancy term
included in k-equation
- thermal fluxes

$$
\bar{\rho} \overline{u_{j}^{\prime} h^{\prime}}=-\frac{\mu_{t}}{\sigma_{h, t}} \frac{\partial h}{\partial x_{j}}
$$

Code_Saturne:

* Unstructured (polyhedral).
* Collocated Finite Volume.
* SIMPLEC algorithm for the Vel/pres coupling.
* Time scheme: Crank-Nicolson.

The mass flux non-linear term treated with Adams-Bashforth extrapolation.

* Spatial discretisation: Fully CD.
* Implicit Gradient reconstruction with Gauss method or leastsquares.

Star-CD version 4.xx:

* Unstructured (polyhedral).
* Collocated Finite Volume.
* SIMPLE algorithm for the Vel/pres coupling.
* Time scheme: Three-time levels
* Spatial discretisation: CD (deferred correction \rightarrow cross-diffusion term computed using explicit values).
*Gradient reconstruction with Gauss method for pressure and velocity.
- Re=395
- Domain $2 \pi \delta \times 2 \delta \times \pi \delta$
- LES Ncells= 443,272
- DNS Ncells = 9,486,336 (Ref: Moser et al. 1999)

Unstruct. "Taylor" mesh, Nt=0.44 M, Re = 395

	N x	Ny	Nz
LES	68 to 200	46	42 to 100
DNS	256	193	192

Time history at different points

- History of the flow at 5 monitoring cells
- Number of iters. $=2000$
- Time $(\mathrm{T})=2 \mathrm{~s}$
-Time for one Pass $\left(\mathrm{T}_{\text {pass }}\right)=0.4432725 \mathrm{~s}$

Probes	Y^{+}
1	5.88
2	12.95
3	70.67
4	199.43
5	375.61

- $\mathrm{T} / \mathrm{T}_{\text {pass }}=4.51$

	Star-CD	Saturne
Res Vel	$1.00 \mathrm{E}-005$	$1.00 \mathrm{E}-004$
Res P	$1.00 \mathrm{E}-005$	$1.00 \mathrm{E}-003$
Res Vel/P Coupling	$1.00 \mathrm{E}-005$	$1.00 \mathrm{E}-003$
Rec RHS	? (1 most probably $)$	Vel 10 P 5

Time history at different points

Decorrelation in 500 iteration = about 1 flow-through time

Time history at different points

- Star-CD
- Code_Saturne

Pressures much less correlated, P_rms Star seems much higher Why?

Unstruct. "Taylor" mesh on 1, 2, 3, 4 procs

Channel flow test case: Mean Velocity predictions

Channel flow test case: Reynolds Stresses

Channel flow test case: Budget for k

Budgets of the Reynolds stress components

Ref: T. Omori et al. Int. J. Heat and fluid flow 2008 DNS : Grid ($256 \times 193 \times 192$) $=9.48$ million

Budget for k

- Prod (DNS)
- P_strain (DNS)
- Press_diff (DNS)
- Visc_diff (DNS)

Bilans pour <v'v'>
$\mathrm{Re}=180$ 4 mil grid

DNS : Grid (256x193x192)= 9.48 million

Conclusions:

-DNS possible with only $\mathbf{2}^{\text {nd }}$ order FV (and true Central DS)
-NB: with C_S and S-C DNS not only limited to Channel Flows !
=> whole range of PhD topics
(pipes, bends, particles, heat exchangers, thermal fatigue)
-Default precision parameters seem too severe in C_S (cost +50\%)

Future work:

- Future tests on complex grids (polyhedral cells), and publish!
- Further investigation on quality criteria for LES is needed.
- Wider range of test cases relevant to the nuclear industry (suggestions are more than welcome !)

[^0]
[^0]: Acknowledgements: TSEC programme 'KNOO'
 EPSRC funding under grant EP/C549465/1 for PDRA and Computer resources

