

High Performance Computing : Code_Saturne in the PRACE project

Andy SUNDERLAND Charles MOULINEC

STFC Daresbury Laboratory, UK

Code_Saturne User Meeting Chatou – 1st-2nd Dec 2008

STFC Daresbury Laboratory

HPC service provider to the UK academic community for > 25 yrs

- research, development & support centre for leading edge academic engineering and physical science simulation codes
- STFC-DL / EPCC continue to run National UK HPC service

The Hartree Centre at STFC Daresbury Laboratory

Strategic science themes incl. energy, biomedicine, environment, functional materials

€60M from Large Facilities Capital Fund to build and equip:

10,000 sq ft machine room

10 MW power

€12M systems / two year cycle

The Hartree Centre will be a new kind of Computational Sciences institute for the UK that will:

- stimulate a step change in modelling capabilities for strategic science themes – Grand challenge projects
- multi-disciplinary, multi-scale, effective and efficient simulation
- have at its heart the collaborative development, support and exploitation of scientific applications software

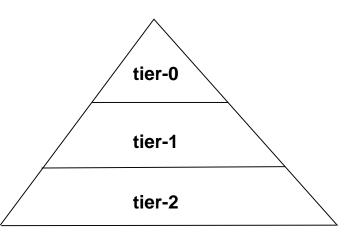
- PRACE
- Blue Gene & Green Top 500
- Porting on Different Machines (Code_Saturne 1.3.2)
- Current Performance (Code_Saturne 1.3.2)
- Conclusions Future Work

What is the relevance of PRACE to this meeting ?

What is the relevance of PRACE to this meeting ?

Code_Saturne has been chosen as one of the principal applications benchmarks for the Partnership for Advanced Computing in Europe (PRACE) project

• The CFD benchmark for the project



The ESFRI* Vision for a European HPC service

- European HPC-facilities at the top of an HPC provisioning pyramid
 - Tier-0: 3-5 European facilities
 - Tier-1: National facilities
 - Tier-2: Regional/University Centres
- Creation of a European HPC ecosystem involving all stakeholders
 - HPC service providers on all tiers
 - Grid Infrastructures
 - Scientific and industrial user communities
 - The European HPC hard- and software industry

Service an Strategy Forum on Research Infrastructures

PRACE – Project Facts

- Objectives of the PRACE Project:
 - Prepare the contracts to establish the PRACE permanent Research Infrastructure as a single Legal Entity in 2010 including governance, funding, procurement, and usage strategies.
 - Perform the technical work to prepare operation of the Tier-0 systems in 2009/2010 including deployment and benchmarking of prototypes for Petaflop/s systems and porting, optimising, peta-scaling of applications
- Project facts:
 - Partners: 16 Legal Entities from 14 countries
 - Project duration: January 2008 December 2009
 - Project budget: 20 M €, EC funding: 10 M €

PRACE – Project Consortium

Participant no.	Participant organisation name	Part. short name	Country
1 (Coordinator)	Forschungszentrum Juelich GmbH	FZJ	Germany
2	Universität Stuttgart - HLRS	USTUTT-HLRS	Germany
3	Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften	BADW-LRZ	Germany
4	Grand Equipement national pour le Calcul Intensif	GENCI	France
5	Engineering and Physical Sciences Research Council (EPCC, STFC DL)	EPSRC	United Kingdom
6	Barcelona Supercomputing Center	nputing Center BSC	
7	CSC Scientific Computing Ltd.	CSC	Finland
8	Eidgenössische Technische Hochschule Zürich - CSCS	össische Technische Hochschule Zürich - CSCS ETHZ	
9	Netherlands Computing Facilities Foundation	NCF	Netherlands
10	Institut fuer Graphische und Parallele Datenverarbeitung der Johannes Kepler Universitaet Linz	GUP	Austria
11	Swedish National Infrastructure for Computing	SNIC	Sweden
12	CINECA Consorzio Interuniversitario	CINECA	Italy
13	Poznan Supercomputing and Networking Center	PSNC	Poland
14	UNINETT Sigma AS	SIGMA	Norway
15	Greek Research and Technology Network	GRNET	Greece
16	Universidade de Coimbra	UC-LCA	Portugal

The next tasks: ... growing into a persistent Research Infrastructure

- Identify architectures and vendors capable of delivering Petaflop/s systems by 2009/2010
- Install prototypes at partner sites to verify viability
- Define consistent operation models and evaluate management software
- Capture application requirements and create a benchmark suite
- Port, optimize and scale selected applications
- Define an open, permanent procurement process
- Define and implement a strategy for continuous HPC technology evaluation and system evolution within the RI
- Foster the development of components for future multi-petascale systems in cooperation with European and international HPC industry
- Start a process of continuous development and cyclic procurement of technology, software and systems for the PRACE Research Infrastructure

Prace Work Packages

- WP1 Management of the Contract
- WP2 Organisational Concept of the Research Infrastructure
- WP3 Dissemination, Outreach and Training
- WP4 Distributed System Management
- WP5 Deployment of Prototype Systems
- WP6 Software Enabling of Petaflop/s systems
- WP7 Petaflop/s Systems for 2009/2010
- WP8 Future Petaflop/s Computer Technologies beyond 2010

Prace Work Package 6

- WP6 Software for petaflop/s systems
- Largest workpackage in PRACE
- All 16 partners involved
- 280 person-months of effort
- Up to 46 person-months of effort from UK
- Goal:
- To identify and understand the software libraries, tools, benchmarks and skills required by users to ensure that their application can use a Petaflop/s system productively and efficiently

Overview of Tasks in WP6

- T6.1: Identification & categorisation of applications
 - Identification of applications & initial benchmark suite
- T6.2: Application requirements capture
 - Analysis of identified applications
- T6.3: Performance analysis & benchmark selection
 - Selection of tools and benchmarks
- T6.4: Petascaling (up to 6 pms from DL)
 - Petascaling of algorithms
- T6.5: Optimisation (up to 6 pms from DL)
 - Establishment of best-practice in optimisation
- T6.6: Software libraries & programming models
 - Analysis of libraries and programming models

COMPLETED

Task 6.1: Applications

- Purpose is to understand what applications will be brought to any PRACE systems
- Having identified and categorised the set of applications an initial representative benchmark suite is proposed
 - Attempt to span a broad field of research and the 'Seven Dwarfs' computational methods
 - Computational engineering/CFD code choice between Trio_u, Open_Foam & Code_Saturne
- Supplies results to T6.2 and WP5
- D6.1: list of representative applications (M6)

Code Coverage (example)

Area / Dwarf	Dense linear algebra	Spectral methods	Structured grids	Sparse linear algebra	Particle methods	Unstructured grids	Map reduce methods
Astronomy and Cosmology	0	0.62	4.91	3.59	5.98	2.99	0
Computational Chemistry	15.35	26.09	1.80	3.45	7.49	0.53	12.98
Computational Engineering	0	0	0.53	0.53	0	0.53	2.8
Computational Fluid Dynamics	0	1.70	7.37	3.05	0.32	3.00	0
Condensed Matter Physics	9.10	15.07	1.62	0.73	1.76	0.28	5.70
Earth and Climate Science	0	2.03	5.83	1.33	0	0.26	0
Life Science	0	4.72	0.94	0.13	0.94	0.28	3.46
Particle Physics	12.50	0	4.59	0.92	0.10	0	89.27
Plasma Physics	0	0	1.33	1.33	3.55	0.42	0.63
Other	0	0	0	0	0	0	0

Final List of Principal Application Benchmark Codes

Application	Field	BCO
NAMD	Molecular Dynamics	EPCC - UK
CPMD	Material Science	BSC - SPAIN
VASP	Computational Chemistry	BSC - SPAIN
QCD	Particle Physics	FZJ - GERMANY
GADGET	Cosmology	LRZ - GERMANY
CODE_SATURNE	CFD	DL - UK
TORB	Plasma & Nuclear Physics	BSC - SPAIN
NEMO	Oceanography	SARA - NL
ECHAM5	Atmospheric Physics	CSCS - CH

Benchmark Code Owner

- One Benchmark Code Owner (BCO) all the way through tasks
 6.3 to 6.5
 - Clear single interface to the application owner/developers
 - Responsible for creating the benchmark code from the application (input set, reference output, etc.)
 - Responsible for porting, petascaling and optimization
 - Recruits other people/resources to work on specific parts of the benchmark code
 - Reports back to 6.3/6.4/6.5 task leaders

Task 6.3: Benchmarks

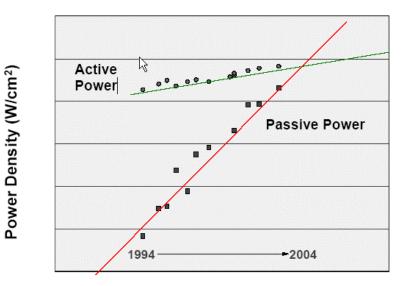
- Task focuses on
 - Identifying performance analysis tools
 - Preparing a representative benchmark suite
 - Initial code preparation
 - Determination of suitable datasets
 - Porting to target hardware platforms
- Relies on work of T6.4 and T6.5 to prepare optimised codes for benchmarking
- WP5 is consumer of the benchmarks
- D6.3.1: Report on available performance analysis & benchmark tools, representative benchmark suite(M11)
- D6.3.2: Final benchmark suite (M24)

Tasks 6.4 & 6.5 : Petascaling & Optimisation

- Understanding how best to petascale & optimise applications identified in T6.1
- Provides petascaled, optimised benchmarks to T6.3
- Results used by WP5 via T6.3
- D6.4: Report on approaches to petascaling (M22)
- D6.5: Report on porting and optimisation of applications (M22)
- Petascaled, optimised codes for benchmark suite

Prace partners for WP6 Code_Saturne benchmarking, petascaling & optimization)

Participant Role	Participant organisation name	Part. short name	Country
WP 6.3 Task Leader	Netherlands Computing Facilities Foundation	NCF	Netherlands
WP 6.4 Task Leader	Barcelona Supercomputing Centre	BSC	Spain
WP 6.5 Task Leader	CSC Scientific Computing Ltd	CSC	Finland
Code_Saturne Benchmark Code Owner (BCO)	Engineering and Physical Sciences Research Council (EPCC, STFC DL)	EPSRC	United Kingdom
Code_Saturne Contributor (Vector)	Universität Stuttgart - HLRS	USTUTT- HLRS	Germany
Code_Saturne Contributor (Cell)	Barcelona Supercomputing Center	BSC	Spain



IBM Blue Gene & Green Top 500

The Power Wall

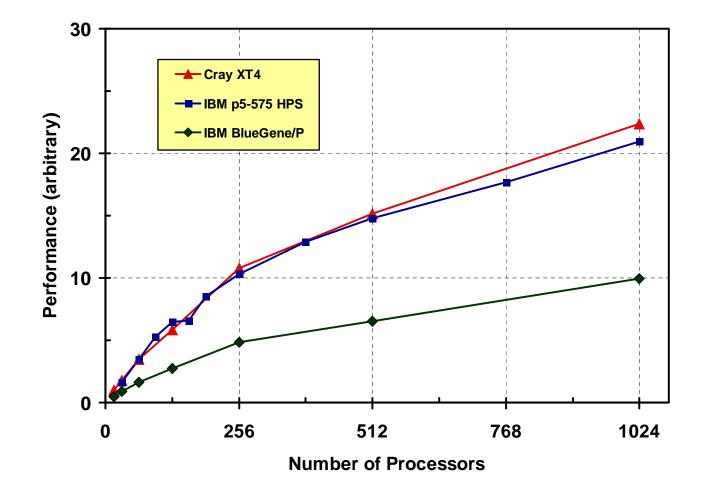
- Power requirement comprises
 - Active power
 - Passive power (gate leakage)
- Power densities can not increase indefinitely
- Active cooling is usually required
 - Cooling itself consumes power

HPCx (2002)	10 Tflop/s peak	1 MW	
Red Storm	20	2 MW	
Earth Simulator	40	7 MW	€6M/year
HECToR (2006)	~50	~ 10 MW	€10M/year

Feb 2008

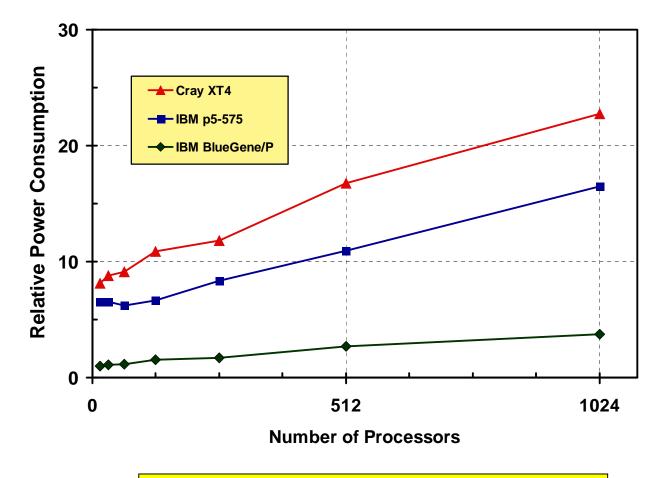
Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)	TOP500 Rank*
1	357.23	Science and Technology Facilities Council - Daresbury Laboratory	Blue Gene/P Solution	31.10	121
2	352.25	Max-Planck-Gesellschaft MPI/IPP	Blue Gene/P Solution	62.20	40
3	346.95	IBM - Rochester	Blue Gene/P Solution	124.40	24
4	336.21	Forschungszentrum Juelich (FZJ)	Blue Gene/P Solution	497.60	2
5	310.93	Oak Ridge National Laboratory	Blue Gene/P Solution	70.47	41
6	210.56	Harvard University	eServer Blue Gene Solution	44.80	170
7	210.56	High Energy Accelerator Research Organization /KEK	eServer Blue Gene Solution	44.80	171
8	210.56	IBM - Almaden Research Center	eServer Blue Gene Solution	44.80	172
9	210.56	IBM Research	eServer Blue Gene Solution	44.80	173
10	210.56	IBM Thomas J. Watson Research Center	eServer Blue Gene Solution	44.80	174
11	210.56	Renaissance Computing Institute (RENCI)	eServer Blue Gene Solution	44.80	175
12	210.56	University of Canterbury	eServer Blue Gene Solution	44.80	176
13	208.31	Forschungszentrum Juelich (FZJ)	eServer Blue Gene Solution	179.20	28
14	208.31	Computational Biology Research Center, AIST	eServer Blue Gene Solution	89.60	52
15	208.31	EDF R&D	eServer Blue Gene Solution	89.60	53
16	208.31	Ecole Polytechnique Federale de Lausanne	eServer Blue Gene Solution	89.60	54

http://www.green500.org


Green Top 500 Supercomputer List (Feb 2008)

Machine	Mflops/ watt	Green Top 500 Ranking	Top 500 Ranking
IBM BG/P (STFC)	357.23	1	121
IBM BG/L (EDF)	208	15	53
IBM p5-575 (HPCx)	30.96	409	101
Cray XT4 (HECToR)	21.01	460	17

http://www.green500.org



Relative Eigensolver Performance on HPC platforms

Relative Eigensolver Power Requirements on HPC platforms

Flops / Second or Flops / Watt ?

Completed

- Blue Gene / L, P (DL, UK)
- IBM AIX, Power5 (DL, UK)
- Cray XT4 (EPCC, UK)
- IBM AIX, Power6 (SARA, NL)
- Cluster x86 (SARA, NL)
- NEC-SX8 (HLRS, DE)

Not Completed

• Cell (BSC, SP)

Optimisation in Progress

2,048 PowerPC 440 700MHz 5.7 TeraFlops at Peak

<u>BG/P</u>

4,096 PowerPC 450 850MHz 13.92 TeraFlops atPeak

IBM AIX (HPCx)

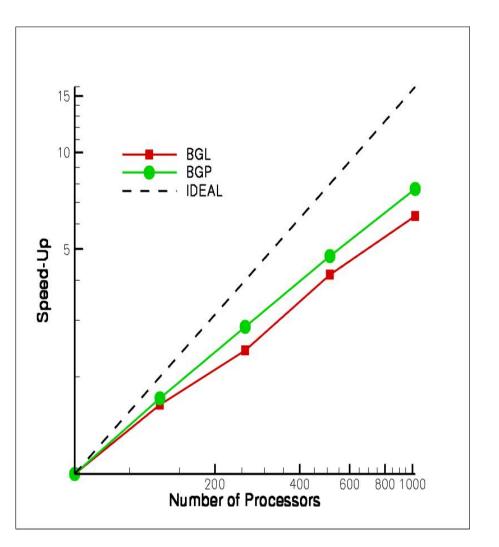
2,560 POWER5 1.5GHz

15.36 TeraFlops at Peak

Cray XT4 (HECToR)

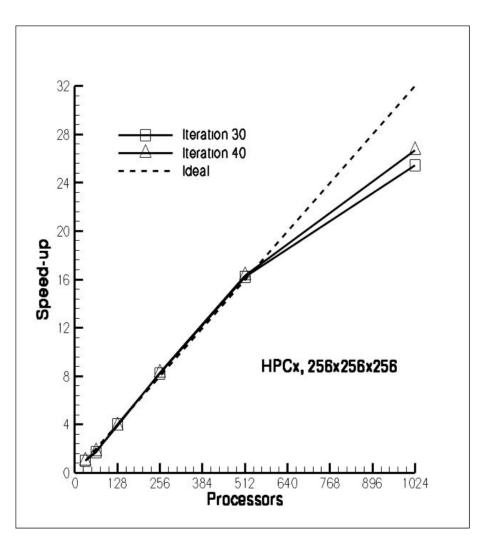
11,328 cores (DC opteron) 2.8GHz

59 TeraFlops at Peak

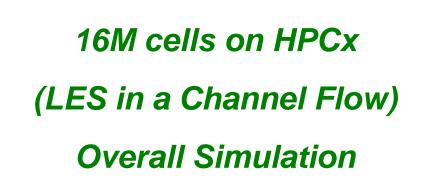


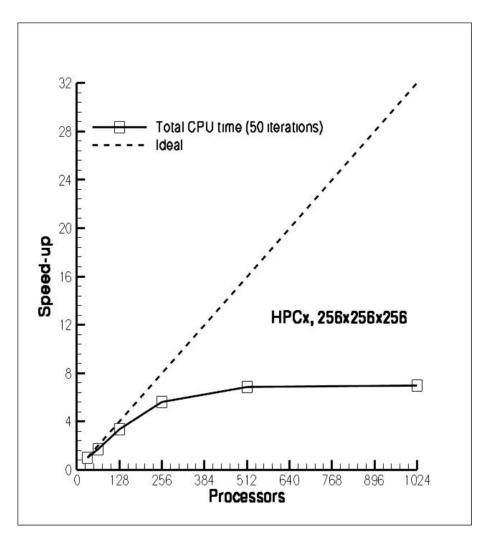
Conditions for the simulation:

Partitioning on a SGI (100Gb RAM) Copy of input files to the HPC Machine Runs (if necessary Restart Files)

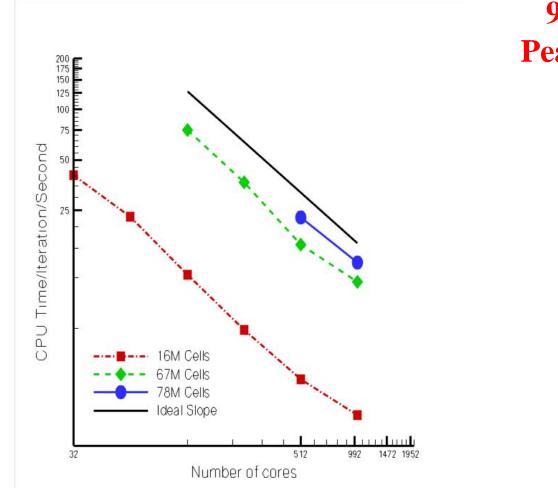


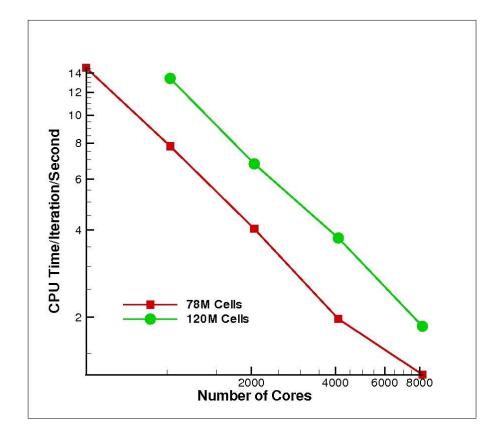
16M cells on BGL/BGP (LES in a Channel Flow) Calculation Part



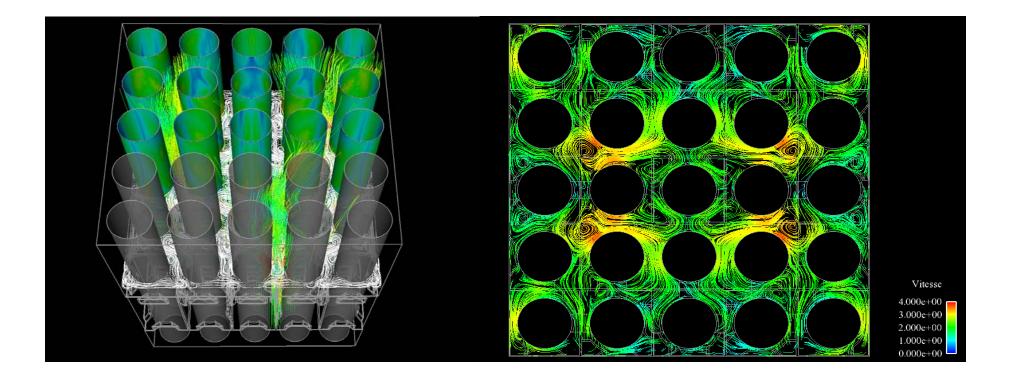


16M cells on HPCx (LES in a Channel Flow) Calculation Part

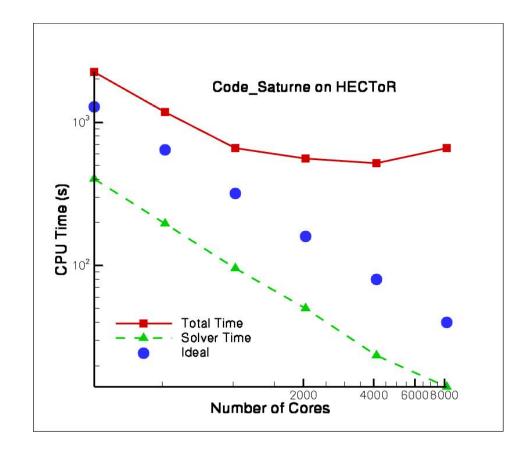



78M cells on HPCx (LES in a Channel Flow – Gold Award)

9.3% of the Peak (96 cores)



78M-120M cells on HECToR (LES in Channel Flow)



100M cells on HECToR (Mixing Grid)

100M cells on HECToR (Mixing Grid)

• HPCx Newsletter

http://www.hpcx.ac.uk/about/newsletter/HPCxNews11.pdf

• Frontiers 2008 (STFC yearly letter)

•Gold Award Medal on HPCx (Speed-Up of 1.7 from 512 to 1,024 procs and 30% discount on all simulations)

•Conference: A.G. Sunderland, M. Ashworth, N. Li, C. Moulinec, Y. Fournier and J.C. Uribe. "Towards Petascale Computing with Parallel CFD Codes". Parallel CFD 2008, Lyon.

Conclusions – Future Work

Conclusions

• Code_Saturne in PRACE

•Very good performance for the calculation part

•Overall perfomance not as good, due to (in 1.3.2) I/O's, Serial Partitioning

Future Work

• Optimisation Cray XT4 (HECToR)

•Vector Machine (NEC and Cray X2)

•NAG project (18 months) Partitioning, I/O

•Porting and Tests on a Cray XT4 (Jaguar, 25,000+ processors)

•Porting and Tests on BG/P Argonne (4 racks)

• Solver part: Good performance

- Solver part: Good performance
- Input/Output: expected good performance within a few months

- Solver part: Good performance
- Input/Output: expected good performance within a few months
- Parallel partitioning: expected good performance within a few months

- Solver part: Good performance
- Input/Output: expected good performance within a few months
- Parallel partitioning: expected good performance within a few months
- What about parallel meshing?