

Code_Saturne: latest news and prospects

Code_Saturne development team

Code_Saturne practical information

- Distribution of Code_Saturne
 - Under GPL license (LGPL for BFT and FVM libraries)
 - New website url: http://www.code-saturne.org/
 - Downloadable versions (released end of November):
 - Production version 1.3.3 validated under EDF quality assurance
 - Development version 1.4.0 beta version, partially tested
 - o Open-source release of SYRTHES for transient thermal simulation in solid
 - Downloadable at http://rd.edf.com/syrthes/
 - o Source CD available at the Code_Saturne user meeting
- Contact and support around *Code_Saturne*
 - Contact and support address: saturne-support@edf.fr
 - For specific information on SYRTHES, please contact syrthes-support@edf.fr
 - Forum and bug-tracker still under construction, but available soon!
 - Annual user club meeting in Chatou
 - o Initial training sessions in March and November in Chatou

Code_Saturne general information

• *Code_Saturne* « gold award » in Computational Fluid Dynamics

• UK HPCx supercomputer, located at Daresbury Laboratory

• Code_Saturne was 1.82x faster on 1024 processors than on 512 processors (a factor 1.7 was required to obtain a gold award)

• For more information:

http://www.hpcx.ac.uk/support/documentation/capability.html/

• See also talk of C. Moulinec, from Daresbury Labs

Latest production version

Code_Saturne version 1.3

Code_Saturne version 1.3

- Fully validated under EDF's Quality Assurance!
 - July October 2007: 1st phase validation of version 1.3.0
 - 29 test cases
 - more than 200 calculations for first phase (1.3.0)
 - wide range of mesh sizes (4 to 2 000 000 cells) and mesh types
 - wide range of calculation size
 - validation of new features and non-regression tests
 - tests on every available computer architecture
 - tests on every available specific physics
 - November 2007 March 2008: 2nd phase validation of corrected version 1.3.1
 - all configurations tested again
 - all cases showing problems with 1.3.0 retested
 - several non-regression cases retested
 - April 2008: release of validated version 1.3.2
 - latest corrections accounted for (mainly due to the halos construction overhauling)

ROD

Corrective version 1.3.3

- Corrections:
 - Inconsistent arguments in the heavy fuel combustion module
 - GUI related corrections:
 - Wall roughness
 - Scalar boundary conditions (when exchange coefficient is specified)
 - Specific numerical model parameters for pressure
 - Periodicity related corrections:
 - Rotation handling in the Lagrangian module
 - Improvement in mesh coherency tests
 - Ghost cell treatment for rotation periodicity
 - For details, see the ChangeLog files

- Improvements:
 - Integrated within the SALOME Platform (as of version 4.3.1)
 - Linked with newest BFT and FVM version (resp. 1.0.8 and 0.1.20)
 - Porting to BlueGene/P super-computers
 - Coupling with SYRTHES 3.4.2 (compliant with larger mesh size)
 - Partial English translation of Kernel messages
 - Partial English translation of the theory documentation
 - No more CPU time per iteration sensitivity when post-processing is activated (on HPC systems like the CCRT)

Integrated in the SALOME platform

- In SALOME version 4.1.3
 - Not yet publicly released
 - Available in the MFEE department
 - Type: /home/salome/runSalome
- Extends the GUI features
 - Integrated access to Code_Saturne GUI
 - Boundary zones selection

- Code_Saturne simulations can be launched and stopped directly from SALOME
- Virtual results and drafts directory for an easier user files management
- See next talk of A. Douce for a demonstration

Latest development version

Code_Saturne version 1.4

Code_Saturne version 1.4

- Intermediate release of stable Code_Saturne development version 1.4.0
 - Partially tested, but not validated under EDF quality assurance!
 - Will remained accessible until release of next fully validated version
 - To enable new features to be tested
 - To have a better feedback from users
 - To provide test users with the more stable environment
 - o Corrective patched versions will be released if needed
- Release of version 1.4.0, end of November 2008, for the User Meeting
 - Make sure to re-generate your studies, some user files being incompatible between versions 1.3 and 1.4, likewise for the XML files!

New Graphical User Interface

- Fully re-written in PyQt 4
 - For a better integration in SALOME
 - Natively supported on GNU/Linux, MacOS X and Windows systems
 - Drag'n drop feature for time average and profile definitions
- Unsupported features (yet) within the new Graphical User Interface:
 - o Coal combustion
 - o Conjugate heat transfer

udy: Interface	
ase: ics-1.4.0	
ML file: /home/monfort/echo.xml	
	Uefinition of 1D profiles
Calculation environment	Destite some laterative
Physical properties	Profile name Variables
Additional scalars	
Boundary conditions	
Time averages	
- 📄 Time step	
- J Volume solution control	
Numerical parameters	
强 📑 Calculation management	
	Add Edit Delete
	Profile name
	Last point X2 Y2 Z2
	Frequency at the end of the calculation 💌 -1
	Nb Courant 🔺 VitesseX
	all_variables
	Visc. tu Vitesse7
	VitesseY
	Vitessex
	Dissip
	ND Fourier
	Enerturb
	Pression

- Verification mode a.k.a. « stand-alone preprocessor »
- Matisse engineering module for nuclear waste storage

Numerical aspects

• New algebraic multigrid algorithm for Pressure

• Compatible with parallelism and periodicity

- Periodicity of translation and/or rotation are compatible
- Scalable up to a large number of cells and/or processors

• May leverage convergence issues on mesh of poor quality

• Smoother evolution of CPU time per iteration than with standard Conjugate Gradient algorithm

• Major improvement on the elapsed CPU

- Up to 10x faster on the pressure resolution
- Up to 3 or 4x faster on the global elapsed time!

Combustion modeling

- Accounting for possible oxycombustion in coal combustion
 - See dedicated talk of J. Santamaria
- Extension of the heavy fuel combustion
 - Possibly several initial droplets size

- Coal combustion in Lagrangian formulation is now deprecated
 - Not working since several releases
 - No decision yet on whether it will be reactivated
 - Lagrangian coal particles postprocessing still available

Atmospheric flows modeling

• Based on the code *Mercure_Saturne*

• Step-by-step integration

• At the moment, only neutral atmosphere modeling is available

o End-user setup:

- METEO_DATA: meteo files to be given in the runcase script
- usppmo.F: choice of the atmospheric modelling feature
- usatin.F: parameters initialization
- usatcl.F: boundary conditions setup
- usativ.F: variables initialization

Cooling tower simulation

●Based on former N3S_Aeros

•Not fully integrated yet

- oMissing features and some user files
- oPoppe and Merkel models available
- oPost-processing of exchange zones
- •Contact the development team for more information

•See dedicated talk of F. David and H. Cordier

Saint-Laurent 2D simulation

Code coupling features

- Code_Saturne / SYRTHES coupling
 - Coupling with version 3.4.2 for larger mesh sizes.
 - Incompatible with former file format: no restarting with a calculation from SYRTHES 3.3 version
 - All codes are open-source (see Code_Saturne website)
- Code_Saturne / Code_Aster coupling
 - External fluid/structure interaction studies
 - Coupling in SALOME platform with YACS module
 - Still under development and validation
 - Final stage of integration in standard version of Code_Saturne, Code_Aster and SALOME
 - Contact the development team for more information
- Code_Saturne / Code_Saturne coupling
 - Still under development and validation
 - Contact the development team for more information

Architectural changes

• Complete translation of user scripts and study directories structure

- English translation of comments and variables
- English translation of script names
 - cree_sat **becomes** cs_create
 - info_cs becomes cs_info
 - lance **becomes** runcase
- English translation of study structure
 - FORT becomes SRC
 - USERS **becomes** REFERENCE
- Change in the MPI initialization
 - SYRTHES coupling is no more handle by the script but by a user file ussyrc.F (via criteria selection with the GETFBR function)

Architectural changes

• Change in the pre-processing phase

• A single file preprocessor_output is now generated by the Preprocessor

• A Partitionner reads the preprocessor_output file and generates a domain_nXXXXX file for domain splitting

New keywords

- IMGR(IPR(IPHAS)) = 1 to activate the multigrid algorithm for the pressure
- EPSRSM = 1.D-8 to control the precision of the right-hand side reconstruction (splitting of EPSILO in two variables)
- NCKPDC (size of the head-loss tensor) doest not exist anymore, it is now supposed to be always equal to 6
 - uskpdc.F files have to be re-written
 - Pay attention to all user files that passed NCPDC as an argument of the subroutine!

Prospects

Towards *Code_Saturne* version 2.0 and beyond...

Stabilization of 1.4 features

- Add missing features to the new GUI (coal combustion, radiative transfer, ...)
- Finalization of the *Code_Aster* coupling
- Finalization of the cooling tower module
 - Enabling the restarting capabilities
 - Test the parallelism computation
- Further integration of atmospheric module
 - Potential temperature for non-neutral atmosphere
- Continue the improvement on the linear solver
 - Scalability of the multigrid algorithm for the pressure
- Make *Code_Saturne* still more efficient on HPC systems
 - Parallelize the non-conforming joining algorithm
 - Parallelize the Lagrangian modelling

Architecture improvements

- Smooth transition to Fortran 95
 - Fortran 77 shows some limits in terms of code complexity and maintenance
 - Use of limited new features in first step: dynamic allocations, data structure, function prototypes, ...
- Switch to autotools for Kernel building
 - Keep the coherency with other module (Enveloppe, BFT, FVM)
 - Installation should be easier for the end-user
- Provide some binary packages for Linux distributions
 - Already available for FreeBSD systems
 - Work on progress for Debian systems
- Provide some binary packages for Windows
 - Not planned at EDF, all external contributions would be welcome!

Perspective in further developments

- Progress in algorithms
 - Opportunity of velocity-pressure coupled solver
 - Pseudo-compressible solver scheme for dilatable flows
 - Optimized relative precision of solvers for faster calculations
- Physical modeling
 - Ionic mobility
 - Opportunity of specific module for fire-driven flows
 - Adaptation to simulation of flows in pumps
- Code_Saturne / Code_Saturne coupling
 - Work in progress
- Treatment of uncertainties
 - Test of plugging of OpenTurns platform (open source) to *Code_Saturne*
 - If convenient, triggering from Code_Saturne GUI

Focus: pumps modelling

Only for incompressible flows

• First step: development of a steady method

- So-called « mixing plane » method
- Based on code/code coupling feature
- A non-conservative method by design
- Mass-flux loss < 1% in most tests
- Still under development!

Thank you for your attention!

And a special thank for every *Code_Saturne* user and developer for their contribution!

