

Numerical methodology for the study of a fluid flow through a mixing grid

Contributors:

J. Bonelle, Y. Fournier, F. Jusserand (R&D/MFEE), S.Ploix (R&D/SINETICS), L. Maas (INCKA), B. Quach (SOGETI)

Contents

- Industrial background :
 - Better understanding of fuel assemblies
- Numerical approach :
 - A numerical methodology overcoming experimental limits.
- First calculations :
 - Generation of hexahedral meshes and CFD calculations.
 - Improvement of numerical tools for HPC calculations on industrial grid configurations
- Visualization
 - Tool's performance and functions
 - FSI needs

Better understanding of the mechanical and vibratory behaviour of the fuel assemblies inside the core vessel :

- Stretch of core vessels' operation campaign durations
- Multiple assembly suppliers: mixed cores
- Ultimate goal: prediction of rods' vibration induced fatigue: « fretting » phenomena

Industrial background mixing grids' description

Function :

- Fuel rods are held in place by mixing grids
- Improvement of heat exchange and homogenization of coolant fluid's temperature

Dimple Vane (bossette) (ailette de recirculation) Spring (ressort) Mixing prototype based on AFA-Fluid XL design

A specific design for each type of mixing grid

5x5

grid

Numerical methodology

193 assemblies in a 1300 MW core vessel; 17*17 fuel rods per assembly held in place by 10 mixing grids

CFD methodology : Hexahedral meshes generation

- Prototype grid : 5x5 AFA XL
- Tests of different meshing tools:
 - SIMAIL
 - PAL-SALOME: GEOM and SMESH
 - GAMBIT
 - HARPOON
 - ICEM

CFD Methodology : Hexahedral meshes generation

CFD Methodology : Improvement for HPC industrial configurations

- Prototype grid: 5x5 AFA XL
- Tetrahedral mesh:
 - 100 M tetrahedra (~ 30 M Hexahedra)
- U-RANS approach: k epsilon turbulence model
- 15 000 iterations
- Time step: 1. e-06 1. e-05
- Scalable wall function (IDEUCH = 2) great refinement
- Gradient reconstruction
 - Iterative reconstruction of the non-orthogonalities: IMRGRA = 0
 - Least squares method (partial neighborhood): IMRGRA = 3

CFD Methodology : Improvement for HPC industrial configurations

100 M Tetrahedra

CFD Methodology : Improvement for HPC industrial configurations

 Tests of *Code_Saturne*®'s preprocessor and kernel

Performance results

Machine		BlueGene	Platine			
Number of processors	1024	2048	4096	1024	1024	2048
Number of cells per processor	99250	49650	24750	99250	99250	49650
IMRGRA	0	0	0	0	3	3
CPU time per iteration (s)	250	150	69	105	90	15

- Numerical tools have been improved for High Performance Calculations
- Elementary calculations:
 - Generation of mixing grid's hexahedral meshes
 - Start of thermo-hydraulic sensitivity analysis
 - Numerical derivation of fluid spectra: first investigations

CFD Methodology: FSI needs

_	-	 -	 -	-

edf

ROD

Visualization for Cachemire'07 case

A few figures

- SMP machine with 32 Gbytes of RAM
- Mesh = 8 Gb RAM
- Each field = 2 Gb RAM
- 2 scalar + 3 vector fields $\rightarrow \Sigma =$ 30 Gb of RAM
- Data size on the domain skin at each step = 75 Mb

Visualization for Cachemire'07 case

A. Mixing the fluid

B. Introducing the cutting plane

C. Traversal structure of the flow

D. Zoom on 3*3 rods

Horizontal stress variation on developed fuel rods

18

What is interactive?

Interactive visual exploration

- 3D navigation, Scalar maps
- Semi-interactive (<1min)
 - Iso-surface, cut-planes, developed rod, create some streamlines

During coffee break (1-5 min)

- Animation of a cutting plane or iso-surface
- Create streamlines on the whole volume
- Compute secondary fields

Made with scripts, batch processing

- Profiles and plots
- Complex animations

Roadmap	

Today	Tomorrow	Later On	
5*5 grid	17*17 grid	Full core vessel : • 17*17 grids • 10 grids per assembly • 196 assemblies	
100 million tetrahedra	220 million hexahedra	300 billion hexahedra	
Volume data (full analysis):	Volume data: 40	Volume data: 60 Tb/step=15Pb	
4 Gb on disk → 30 Gb RAM	Gb/step=10Tb	60 Tb (1 step) → 500 Tb RAM	
Skin data (rod interaction only):	40 Gb (1 step) → 300 Gb RAM	Skin data: 1 Tb / step =	
75 Mb on disk → 1 Gb RAM	Skin data: 750 Mb / step =	200 Tb → 15 Tb RAM	
	15 Gb → 10 Gb RAM		
1 SMP machine	64 SMP nodes	8000 SMP nodes	
32 Gb RAM	8 Gb / node = 512 Gb RAM	64 Gb / node = 512 Tb RAM	

Extensions of the visualization service

For Tomorrow:

- Ensight Gold DR
 - Distributed on cluster
 - Polyhedron support
- Paraview with extensions
 - Polyhedrons support
 - RAM usage
 - Speed improvement
 - Improving the workflow

Extended renderings:

- Sprited particles
- Shadows
- Physiologically-inspired renderings
- parametric shaders to pilot sensitivity renderings

Adobes, F. Archambeau, S. Benhamadouche, A. Caruso, C. Le-Maitre Vurpillot, C. Raynaud-Quantin, M. Sakiz (R&D/MFEE)

C. Mouton, G. Thibault (R&D/SINETICS),

