Benchmark on the numerical simulation of a tube bundle vibration under cross flow

Fabien Huvelin (University of Lille & EDF R&D)

(University of Cergy-Pontoise & CEA)
(CEA)
(CEA)
(EDF R&D)
(University of Lille)

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

INTRODUCTION	

CREATIF Program :

Comprehension of the vibratory Response of an Array of Tubes in Interaction with a Fluid.

Experiment AMOVI (CEA)

1	1	1	:	1	1	•
٠	٠	٠	٠	٠	٠	

- 24 fixed tubes (Plexiglas, f>300Hz)
- 1 moving tube (steel, f=14.3Hz)
- P/D = 1.44
- Single phase flow (flow rate from 0 to $5 \text{ m}^3.\text{h}^{-1}$)

contact : fbaj@cea.fr

CONTENTS

- 1 Methodology
- 2 Real case (2D model)
- 3 Numerical case (2D model)
- 4 Real case (3D model)

Methodology

11 Roundary conditions	
METHODOLOGY REAL CASE (2D MODEL) NUMERICAL CASE (2D MODEL) REAL CASE (3D MODEL)	

Boundary conditions at fluid-structure interface

$$\begin{cases} \vec{u}_s = \vec{u}_f \\ = \vec{\sigma}_s \cdot \vec{n} = \vec{\sigma}_f \cdot \vec{n} \end{cases}$$

Partitioned coupling

1.2 Tools Methodology | Real case (2D MODEL) | NUMERICAL CASE (2D MODEL) | REAL CASE (3D MODEL)

Structure solver (rigid body)

- 1 degree of freedom oscillator for EDF tool
- Finite element method with Lagrangian formulation for CEA tool

Fluid solver

- Finite volume method with Eulerian formulation (EDF tool)
- Finite element method with Eulerian formulation (CEA tool)
- \Rightarrow Use of an ALE technique to follow the structure interface (both cases)

Partitioned procedure

- Fluid solver needs structure data at time tⁿ⁺¹
- Structure solver needs fluid data at time tⁿ⁺¹
- \Rightarrow Prediction : the position of the structure interface at time t^{n+1}

(Piperno et al. ,2001)

Real case (2D model)

de <mark>L</mark>ILLE UMR CNRS 8107

2.1 Geometry (experiment AMOVI, CEA)

METHODOLOGY | REAL CASE (2D MODEL) | NUMERICAL CASE (2D MODEL) | REAL CASE (3D MODEL)

WALL

2.2 Parameters	
METHODOLOGY REAL CASE (2D MODEL) NUMERICAL CASE (2D MODEL) REAL CASE (3D MODEL)	

Structu	re propertie	°S
Natural frequency	(Hz)	14.3
Natural damping	(%)	0.25
Mass	(kg.m ⁻¹)	0.298
Diameter	(mm)	12.15

-	Fluid propertie	5
Density	(kg.m ⁻³)	10 ³
Dynamic viscosity	(kg.m ⁻¹ .s ⁻¹)	10-3

P/D	(-)	1.44
Inlet velocity	$(m.s^{-1})$	[0.03 ; 0.15]
Reduced velocity	(-)	[0.5 ; 2.8]
Reynolds number	(-)	[1200;6000]

de <mark>L</mark>ILLE UMR CNRS 8107

- Numerical problem ?
- Physical problem ?

Numerical case (2D model)

3.1 Parameters

METHODOLOGY | REAL CASE (2D MODEL) | NUMERICAL CASE (2D MODEL) | REAL CASE (3D MODEL)

Structur	re proper	ties
Natural frequency	(Hz)	2.5
Natural damping	(%)	0.0437
Mass	(kg)	0.298
Diameter	(mm)	10.00

	Fluid propertie	S
Density	(kg.m ⁻³)	10 ³
Dynamic viscosity	(kg.m ⁻¹ .s ⁻¹)	10-3

P/D	(-)	1.44
Inlet velocity	$(m.s^{-1})$	[0.001; 0.035]
Reduced velocity	(-)	[0.1;4.5]
Reynolds number	(-)	[30;1200]

2.2 Dicolocomont	
Displacement	
METHODOLOGY REAL CASE (2D MODEL) NUMERICAL CASE (2D MODEL) REAL CASE (3D MODEL)	

2.2 Fraguency and damping	
J.J. Frequency and damping	
METHODOLOGY REAL CASE (2D MODEL) NUMERICAL CASE (2D MODEL) REAL CASE (3D MODEL)	

Real case (3D model)

4.3 3D effect	
METHODOLOGY REAL CASE (2D MODEL) NUMERICAL CASE (2D MODEL) REAL CASE (3D MODEL)	

- \checkmark Catch the 3 behaviors of the structure
- \checkmark Used of an extrapolation method for the damping
- ✓ Over-estimation of force fluid with 2D simulation (3D simulation is required)

- ➤ 3D simulation for numerical case
- > 3D simulation with turbulent model for real case
- > Comparison of the real case to the experiment AMOVI (CEA)

