

Simulations of flows over spill weirs with *Code_Saturne*

Nathan Aymerich², Yvan Bercovitz², Erwan Le Coupanec¹

¹Fluid Mechanics, Energy and Environment, EDF R&D, Chatou, France, erwan.lecoupanec@edf.fr
²National Hydraulics and Environment Laboratory, EDF R&D, Chatou, France, yvan.bercovitz@edf.fr

Code_Saturne user meeting, 5 April 2018

 Project initiated by EDF R&D studying geometries of spill weir

Goal: <u>enhance adherence</u>, limit low pressures on the weir and <u>delay</u> dynamic <u>flow separation</u> up to higher upstream water heights.

■ Volume Of Fluid method new in *Code_Saturne* V5.0.

1 VOF model

2 Thin weir

3 Creager weir

4 Piano Key (PK) Weir

5 References

2 Thin weir

3 Creager weir

- 4 Piano Key (PK) Weir
- 5 References

Starting with Navier-Stokes equation:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \underline{\nabla}.(\rho \underline{u}) = 0\\ \frac{\partial \rho \underline{u}}{\partial t} + \underline{\nabla}.(\rho \underline{u} \otimes \underline{u} - \underline{T}) = \rho \underline{g} \end{cases}$$
(1)

with $\underline{\mathsf{T}}$ the stress tensor:

$$\underline{\underline{T}} = -(P + \frac{2}{3}\mu\underline{\nabla}.\underline{\underline{u}})\underline{\underline{1}} + \mu(\underline{\underline{\nabla}}\ \underline{\underline{u}} + (\underline{\underline{\nabla}}\ \underline{\underline{u}})^{T})$$

VOF model

- An air volume fraction (often called void fraction) is defined: α .
- Mixing laws are used:

$$\rho = \alpha \rho_{air} + (1 - \alpha) \rho_{water} \tag{2}$$

$$\mu = \alpha \mu_{air} + (1 - \alpha) \mu_{water} \tag{3}$$

By injecting (2) in the mass balance equation, we get:

$$\frac{\partial(\alpha\rho_{air} + (1-\alpha)\rho_{water})}{\partial t} + \underline{\nabla}.\left([\alpha\rho_{air} + (1-\alpha)\rho_{water}]\underline{u}\right) = 0$$
$$\Leftrightarrow (\rho_{air} - \rho_{water})[\frac{\partial\alpha}{\partial t} + \underline{\nabla}.(\alpha\underline{u})] + \rho_{water}\underline{\nabla}.(\underline{u}) = 0$$

and the following equivalence between the transport equation of the void fraction and the incompressibility equation:

$$\frac{\partial \alpha}{\partial t} + \underline{\nabla}.(\alpha \underline{u}) = 0 \iff \underline{\nabla}.(\underline{u}) = 0$$
(4)

VOF model:

$$\underline{\nabla}.(\underline{u}) = 0$$

$$\frac{\partial \rho \underline{u}}{\partial t} + \underline{\nabla} \cdot (\rho \underline{u} \otimes \underline{u}) = \rho \underline{g} - \underline{\nabla} P + \underline{\nabla} \cdot (\mu (\underline{\nabla} \ \underline{u} + (\underline{\nabla} \ \underline{u})^T - (\frac{2}{3}\mu \underline{\nabla} \cdot \underline{u})\underline{1})$$
$$\frac{\partial \alpha}{\partial t} + \underline{\nabla} \cdot (\alpha \underline{u}) = 0$$

Momentum balance under its solved form, with $P^* = P - \rho_{air}\underline{g}$ the solved pressure:

$$\rho \frac{\partial \underline{u}}{\partial t} + \underline{\nabla} . (\rho \underline{u} \otimes \underline{u}) - \underline{u} \, \underline{\nabla} . (\rho \underline{u})$$
$$= (\rho - \rho_{air})\underline{g} - \underline{\nabla} P^* + \underline{\nabla} . (\mu (\underline{\nabla} \, \underline{u} + (\underline{\nabla} \, \underline{u})^T) - (\frac{2}{3} \mu \underline{\nabla} . \underline{u}) \underline{1})$$

VOF algorithm in Code_Saturne

• Prediction step: computation of $\underline{\tilde{u}}$

$$\rho \frac{\underline{\tilde{u}} - \underline{u}^n}{\Delta t} + \underline{\nabla} . ((\rho \underline{u})^n \otimes \underline{\tilde{u}}) - \underline{\tilde{u}} \, \underline{\nabla} . ((\rho \underline{u})^n) = (\rho - \rho_{a\bar{t}r})\underline{g} - \underline{\nabla} P^n + \underline{\nabla} . (\mu (\underline{\nabla} \, \underline{\tilde{u}} + (\underline{\nabla} \, \underline{\tilde{u}})^T - (\frac{2}{3}\mu \underline{\nabla} . \underline{\tilde{u}})\underline{1})$$

Correction step:

$$\delta P = P^{n+1} - P^n$$

and:

$$\begin{pmatrix} \underline{\underline{u}}^{n+1} - \underline{\tilde{u}} \\ \underline{\Delta t} &= -\frac{1}{\rho} \underline{\nabla} (\delta P) \\ \underline{\nabla} \underline{\underline{u}}^{n+1} &= 0 \end{pmatrix}$$

yielding:

$$\underline{\nabla}.(\underline{\tilde{u}}) = \underline{\nabla}.(\frac{\Delta t}{\rho}\underline{\nabla}(\delta P))$$

 δP_{cell} then $(\underline{u}^{n+1}.\underline{S})_{f_{ij}}$ are computed, and finally \underline{u}^n_{cell} is updated to $\underline{u}^{n+1}_{cell}$

Resolution of the void fraction transport equation and update of (ρ<u>u</u>.<u>S</u>)_f with an upwind scheme and of mixing properties ρ and μ

$$\frac{(\alpha_l^{n+1} - \alpha_l^n)}{\Delta t} + \underline{\nabla} \cdot (\alpha \underline{u})^{n+1} = 0$$

Possibility to iterate over these steps to make <u><u>n</u> converge towards <u>u</u>ⁿ⁺¹ (in remaining terms appearing in the sum of prediction and correction equations).</u>

VOF model

Discretization over the cell Ω_i and between t_n and t_{n+1} :

$$\frac{\partial \alpha}{\partial t} \rightarrow \frac{|\Omega_i|}{\Delta t} (\alpha_I^{n+1} - \alpha_I^n)$$

$$\underline{\nabla} \cdot (\alpha \underline{u}) \rightarrow \sum_f [(1-\theta)(\alpha_f \underline{S}_f \cdot \underline{u}_f)^n + \theta(\alpha_f \underline{S}_f \cdot \underline{u}_f)^{n+1}]$$

where:

- f face of Ω_i
- \underline{S}_{f} surface vector of face f
- α_f face value of α (interpolated)
- \underline{u}_{f} face value of \underline{u} (interpolated)

Discrete transport equation applying an implicit Euler time scheme $(\theta = 1)$:

$$\frac{|\Omega_i|}{\Delta t}(\alpha_i^{n+1}-\alpha_i^n)+\sum_f(\alpha_f\underline{S}_f.\underline{u}_f)^{n+1}=0$$

Numerical scheme choice

Necessary properties:

- α bounded between 0 and 1 min/max principle.
- avoid interface diffusion.

Numerical convection schemes implemented in *Code_Saturne* for VOF computation: STACS [2], M-HRIC [4], M-CICSAM [7]

Principle: blend a very compressive scheme and a Total Variation Diminushing scheme, with a weighting factor depending on angle between the free surface and the face normal, and on the Courant number *Co*. Convection scheme comparisons - 1D convection of a step signal

Convection scheme comparisons - 1D convection of a sinus signal

1 VOF model

2 Thin weir

3 Creager weir

4 Piano Key (PK) Weir

5 References

Simulation of a flow over a thin weir

Figure: Sketch of a spilling way with a thin weir

Thin weir

Figure: Velocity for $q = 0.1m^2/s$

Thin weir

Validation of *Code_Saturne* simulations by comparison with empirical laws:

Height-Flow rate law:

$$Q = C_D b \sqrt{2g} H^{3/2}$$

$$C_D = 0.4023 (\frac{h_e}{H})^{3/2} (1 + 0.135 \frac{h_e}{p}) \quad (Rehbock \ [3])$$
with $h_e = H + 0.0011$

Profile of the lowest free surface of the water flow:

$$\frac{z}{H} = \frac{1}{2} \left(\frac{x}{H}\right)^{1.85} \quad (Scimemi \ [5])$$
$$\frac{z}{H} = 0.556 \left(\frac{x}{H}\right)^2 \quad (De \ Marchi \ [5])$$

Free surface defined for the criterium $\alpha = 0.5$, for the 2nd mesh, the thickness of the free surface ($\alpha \in [0.001, 0.999]$) is not bigger than one cell height (2mm) for all flow rates.

Débit (m^2/s)	H _{th} (m)	H _{simu} (m) ±2mm	H_{simu} (m) ± 1 mm	Écart %	C _D Rehbock
0.025	0.0565	0.056	0.056	-0.85	0.4205
0.0375	0.0741	0.0726	0.074	-0.15	0.4196
0.05	0.0898	0.088	0.09	0.27	0.4198
0.0625	0.1041	0.104	0.104	-0.06	0.4203
0.075	0.1174	0.116	0.118	0.52	0.4210
0.0875	0.1299		0.13	0.06	0.4218
0.1	0.1418	0.14	0.142	0.13	0.4227
0.125	0.1641	0.162	0.164	-0.06	0.4245

Table: Values of the height H for several flow rates

Thin weir - comparison to Height-Flow rate laws

Thin weir - lowest free surface profile

Thin weir - Turbulence model sensitivity

1 VOF model

2 Thin weir

3 Creager weir

4 Piano Key (PK) Weir

5 References

Creager weir

Simulation of a flow spilling over a Creager weir chosen (dimensioning) height: 20 cm (reduced size)

Figure: Mesh of the Creager weir

Figure: velocity field for $q = 0.2m^2/s$

Validation of the simulations by comparing with empirical laws:

Height-flow rate:

$$Q = C_D b \sqrt{2g} H^{3/2}$$

$$C_D = 0.4950(rac{H}{H_D})^{0.12}$$
 pour $(0.2 < rac{H}{H_D} < 2)$ (Brudenell [6])

Free surface profile (Vischer and Hager [1]):

$$S = 0.75(\chi^{1.1} - \frac{1}{6}X)$$
 for $(-2 < X/\chi^{1.1} < 2)$
with $S = s/H_D$ $\chi = H/H_D$ $X = x/H_D$

Creager weir - Height-Flow rate law

Flow rate (m^2/s)	$H_{th}(m)$	H_{simu} (m) $\pm 2mm$	Deviation %	CD	H/H_D
0.075	0.1105	0.112	1.36	0.461	0.55
0.09	0.1237	0.124	0.27	0.467	0.62
0.105	0.1360	0.136	-0.01	0.473	0.68
0.1125	0.1419	0.14	-1.36	0.475	0.71
0.12	0.1477	0.148	0.21	0.477	0.74
0.135	0.1588	0.16	0.74	0.482	0.79
0.15	0.1695	0.168	-0.88	0.485	0.85
0.165	0.1798	0.18	0.13	0.489	0.90
0.18	0.1897	0.188	-0.89	0.492	0.95
0.1875	0.1945	0.192	-1.30	0.493	0.97
0.195	0.1993	0.196	-1.65	0.495	1.00
0.21	0.2086	0.208	-0.30	0.498	1.04
0.225	0.2177	0.216	-0.78	0.500	1.09
0.525	0.3673	0.36	-1.98	0.533	1.84
0.6	0.3989	0.39	-2.22	0.538	1.99

Table: Values of the height H $\,$ - $\,$ Surface: $\alpha=0.5\,$ - $\,$ $H_D=0.2m$

Creager weir - free surface profile

Real size: $H_D = 3.15m$ (for the comparison with *Flow3D* results on a validation case used by hydraulic engineers at CIH)

Uncertainty on height measurement: $\pm 0.063m$

Flow rate (m^2/s)	H _{th} (m)	H _{simu} (m)	Deviation %	H/H_D	C _{D th}	C _{D simu}	Deviation %
4.0	1.576	1.575	-0.1	0.50	0.4555	0.4555	-0.01
7.1	2.246	2.268	1.0	0.71	0.4753	0.4759	0.12
9.5	2.683	2.709	1.0	0.85	0.4856	0.4861	0.12
11.8	3.079	3.087	0.3	0.98	0.4936	0.4938	0.03
12.3	3.154	3.15	-0.1	1.00	0.4951	0.4950	-0.02
23.6	4.723	4.662	-1.3	1.50	0.5197	0.5188	-0.16
35.4	6.066	5.922	-2.4	1.93	0.5355	0.5340	-0.29

Table: Values of height H for several flow rates - $H_D = 3.15m$

Large scale Creager - comparison with height-flow rate law

Large scale Creager - pressure along surface of the weir

Pressure in boundary cells

Large scale Creager - reduced Creager and flow separation

Figure: Pressure along reduced Creager weir for $H/H_D = 2.5$

Figure: Geometry for the Creager weir 3D simulation - Initialisation

Creager weir - 3D case

Figure: Flow separating from the weir for $H/H_D = 2.3$

Creager weir - 3D case

Figure: Slice view (middle plane along flow direction) - $H/H_D = 2.3$

Creager weir - 3D case

Figure: Slice with (y, z) plane at $x/H_D = 0.3$ - y velocity component - blue zone at the image center belongs to spilling flow - $H/H_D = 2.3$

1 VOF model

2 Thin weir

3 Creager weir

4 Piano Key (PK) Weir

5 References

Piano Key (PK) Weir

Figure: Geometry of a Piano Key Weir - height 4m

Figure: PK Weir - Mesh of the domain (min. cell size 5cm)

PK Weir

Simulation - Flow rate 15.6 m^2/s

PK Weir - comparison with height-flow rate law

Flow rate (m^2/s)	H_{exp} (m)	H_{simu} (m) $\pm 5cm$	Deviation %
3.5	0.5	0.55	10
8.2	1	1.2	20
15.6	2	2.3	15
22.4	3	3.3	10
25.5	3.5	3.9	11.4
35.5	5	5.1	2

Table: Comparison of the values of the height head H $\,$ - experimental data : F. Lempérière

- Validation of the model for 2D overtopping flows.
- Low pressure area observed on Creager weirs and flow separation exhibited on 3D similations of Creager weir.
- Improvements needed on PK weir computations (robustness issues - ongoing work).

- Explore new designs of spilling weirs.
- Optimize existing shapes of weir \rightarrow ongoing internship, workflow in Salome.
- For the VOF module, other topic foreseen: waves propagation and overflow.

1 VOF model

2 Thin weir

3 Creager weir

4 Piano Key (PK) Weir

References

Vischer D. and Hager W. page 44, 1998.

M. Darwish and F. Moukalled.

Convective schemes for capturing interfaces of free-surface flows on unstructured grids.

Numerical Heat Transfer Fundamentals, 2006.

Carlier M. 1986.

Muzaferija S., Peric M., Sames P., and Schellin T. A two-fluid navier-stokes solver to simulate water entry. Proceedings of the Twenty-Second Symposium on Naval Hydrodynamics, 1999.

Sentürk. 1994.

1994.

Hager W. and Schleiss A. 15:173, 2009.

Di Zhang, Chunbo Jiang, Dongfang Liang, Zhengbing Chen, Yan Yang, and Ying Shi.

A refined vof algorithm for capturing sharp fluid interfaces on arbitrary meshes. *Journal of Computational Physics*, 2014.