

First results with Compatible Discrete Operator for nuclear waste storage applications

Vincent Stobiac EDF R&D – LNHE Jérôme Bonelle EDF R&D – MFEE

PURPOSE OF THE STORAGE : LONG TERM SAFETY

 The flow of radionuclides reaching the biosphere should be as low as reasonably achievable

Two possible pathways:

- Migration through artificial tunnels (convection due to higher permeabilities);
- Migration through natural clay (diffusion).

PREVIOUS STUDY : IMPACT OF DENSIFIED STORAGE

Densification of one section of the storage:

- Meshes of 350 millions of tetrahedra generated in 24h (big memory node of cluster);
- Computation done in 22h on 768 cores.

- Anisotropic and heterogeneous problem difficult to solve:
 - Methodology reaches tetrahedral meshing limits;
 - Anisotropy and heterogeneity cannot be treated simultaneously in Code_Saturne.

REQUIRED IMPROVEMENTS

- Non-conforming hexahedral meshing approach:
 - Geometry too complex for conforming hexahedral mesh;
 - Non-conformity will reduce the number of elements.

- A robust method for heterogeneous anisotropic problem:
 - □ High permeability ratio (up to 10⁷) and low dispersion ratio (lower than 10);
 - Should manage non-conforming mesh.

NEW COMPATIBLE DISCRETE OPERATOR SCHEMES

Effective method on polyhedral meshes for advection-diffusion equations:

Integration of the CDO method in Code_Saturne:

- Done by Jérôme BONELLE and Pierre CANTIN (see also poster).
- Background : broad class of compatible, mimetic or structure-preserving schemes
 - Roots: Tonti (1974), Bossavit (1988) (E&M)
 - Related works: VEM (Virtual Element Method), DEC (Discrete Exterior Calculus)
- State of the art method for anisotropic and heterogeneous problems
 - Well understood theoretical basis.

CDO : DISCRETIZATION PROCESS

Three families of CDO schemes depending on where potential DoFs are located:
Vertex, cell or face-based schemes

PERMEABILITY GRADIENT TEST CASE

- Saturated and steady 1D flow throughout anisotropic soils:
 - Non-conformity of the mesh at the interface.

HYDROCOIN TEST CASE

- Fully saturated domain with two fractures (permeability ratio of 100):

First results with CDO for nuclear waste storage applications - JUS 2016 | 01/04/2016 | 8

STORAGE TEST CASE WITH SIMPLIFIED GEOMETRY

Isotropic permeabilities to compare with Code_Saturne.

Both conforming and non-conforming hexahedral meshes are tested:

STORAGE TEST CASE WITH SIMPLIFIED GEOMETRY

Preliminary results with a coarse mesh:

STORAGE TEST CASE WITH SIMPLIFIED GEOMETRY

Impact of the mesh size:

- Total number of elements:
 - Conforming hexahedral mesh: from 140 000 to 6,9 millions.
 - □ Non-conforming hexahedral mesh: from 45 000 to 2,2 millions.

CONCLUSIONS

- Encouraging results with CDO on hydrogeological flows:
 - Able to handle high heterogeneity and anisotropy;
 - Robust to non-conforming mesh.

Work in progress:

- Comparison of initialization strategies;
- Quantification of maximal non-conformity.
- Next steps:
 - MPI parallel computing in CDO;
 - Performance tests on large meshes (up to the complete repository architecture);
 - Extension to other flows...

