EDF R&D

Fluid Dynamics, Power Generation and Environment Department Single Phase Thermal-Hydraulics Group

6, quai Watier F-78401 Chatou Cedex

SEPTEMBER 2017

Code_Saturne documentation

Code_Saturne version 5.0 tutorial: stratified junction

contact: saturne-support@edf.fr

TABLE OF CONTENTS

	I Introduction	3
1	Introduction	4
1.1	Code_Saturne SHORT PRESENTATION	4
1.2	About this document	4
1.3	Code_Saturne COPYRIGHT INFORMATIONS	4

	II Stratified junction	5
1	Study description	6
1.1	Objective	6
1.2	Description of the configuration	6
1.3	Geometry	6
1.4	DATA SETTINGS	6
2	Mesh characteristics	7
3	Computation of the Stratified junction configuration	7
3.1	Options and models	7
3.2	Initial and boundary conditions	8
3.3	Physical properties	8
3.4	TIME STEPPING PARAMETERS	8
3.5	OUTPUT MANAGEMENT	9
3.6	User routines for advanced post-processing	9
3.7	Results	10

	III Step by step solution	13
1	Detailed tutorial step by step	14

1.1	CREATION OF THE STUDY IN A TERMINAL	14
1.2	PREPARING AND LAUNCHING Code_Saturne COMPUTATION	14

Part I

Introduction

EDF R&D

1 Introduction

1.1 *Code_Saturne* **short presentation**

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D axisymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred to as "specific physics", for the treatment of lagrangian particle tracking, semi-transparent radiative transfer, gas, pulverized coal and heavy fuel oil combustion, electricity effects (Joule effect and electric arcs) and compressible flows. *Code_Saturne* relies on a finite volume discretization and allows the use of various mesh types which may be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging nodes).

1.2 About this document

The present document is a tutorial for *Code_Saturne* version 5.0. It presents a simple test case of a stratified flow in a T-junction and guides the future *Code_Saturne* user step by step into the preparation and the computation of the case.

The test case directories, containing the necessary meshes and data are available in the examples/3-stratified_junction directory in *Code_Saturne* source directory.

This tutorial focuses on the procedure and the preparation of the *Code_Saturne* computations with or without SALOME. For more elements on the structure of the code and the definition of the different variables, it is higly recommended to refer to the user manual.

1.3 *Code_Saturne* copyright informations

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. *Code_Saturne* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Part II

Stratified junction

1 Study description

1.1 Objective

The aim of this case is to train the *Code_Saturne* user on a simplified but real 3D computation. It corresponds to a stratified flow in a T-junction. The test case will be used to present some advanced post-processing techniques.

1.2 Description of the configuration

The configuration is based on a real mock-up designed to characterize thermal stratification phenomena and associated fluctuations. The geometry is shown on figure II.1.

Figure II.1: Geometry of the case, with dimensions in mm

There are two inlets, a hot one in the main pipe and a cold one in the vertical nozzle. The volumic flow rate is identical in both inlets. It is chosen small enough so that gravity effects are important with respect to inertia forces. Therefore cold water creeps backwards from the junction towards the elbow until the flow reaches a stable stratified state.

1.3 Geometry

Characteristics of the geometry:

Diameter of the pipe $D_b = 0.40 \ m$

1.4 Data settings

The boundary conditions of the flow are as follows:

Cold branch volume flow rate	$Dv_{cb} = 4 \ l.s^{-1}$
Hot branch volume flow rate	$Dv_{hb} = 4 \ l.s^{-1}$
Cold branch temperature	$T_{cb} = 18.26^{\circ}\mathrm{C}$
Hot branch temperature	$T_{hb} = 38.5^{\circ}\mathrm{C}$

The initial water temperature in the domain is equal to 38.5°C.

Water specific heat and thermal conductivity are considered constant and calculated at 18.26° C and 10^{5} Pa:

- heat capacity: $C_p = 4.182.88 \ J.kg^{-1}.^{\circ}C^{-1}$
- thermal conductivity: $\lambda = 0.601498 \ W.m^{-1}.^{\circ}C^{-1}$

The water density and dynamic viscosity are variable with the temperature. The functions are given below.

2 Mesh characteristics

The mesh used in the actual study had 125000 elements. It has been coarsened for this example in order for calculations to run faster. The mesh used here contains 16320 elements.

Type: unstructured mesh

Coordinates system: cartesian, origin on the middle of the horizontal pipe at the intersection with the nozzle.

Mesh generator used: SIMAIL

Figure II.2: References of the boundary faces

3 Computation of the Stratified junction configuration

In this case, advanced post-processing features will be used. A specific post-processing sub-mesh will be created, containing all the cells with a temperature lower than 21°C, so that it can be visualized (with ParaView for instance). The variable **temperature** will be post-processed on this sub-mesh. A 2D clip plane will also be extracted along the symmetry plane of the domain and the temperature will be written on it.

3.1 Options and models

The following options are considered for the case:

Modeling feature	choice
Flow type	unsteady flow
Time step	variable in time and uniform in space
Turbulence model	$k - \varepsilon LP$
Thermal model	Temperature (°C)
Physical properties	uniform and constant for specific heat
	and thermal conductivity and
	variable for density and dynamic viscosity

References	Type of boundary conditions	
2	Cold inlet	
6	Hot inlet	
7	Outlet	
5	Wall	

Table II.1: Boundary faces colors and associated references

3.2 Initial and boundary conditions

The temperature should be initialized at 38.5°C in the whole domain.

The boundary conditions are defined as follows:

- Flow inlet: Dirichlet condition
 - Velocity of 0.03183 $m.s^{-1}$ for both inlets
 - Temperature of 38.5°C for the hot inlet
 - Temperature of 18.6°C for the cold inlet
- Outlet: default value
- Walls: default value

Figure II.2 shows the references used for boundary conditions and table II.1 defines the which type of boundary conditions is imposed for each reference.

3.3 Physical properties

In this case the density and the dynamic viscosity are functions of the temperature.

The following variation law for te density needs to be specified in the Graphical User Interface:

$$\rho = T(AT + B) + C \tag{II.1}$$

where ρ is the density, T is the temperature, $A = -4.0668 \times 10^{-3}$, $B = -5.0754 \times 10^{-2}$ and $C = 1\,000.9$. For the dynamic viscosity, the variation law is:

$$\mu = T(T(AMT + BM) + CM) + DM \tag{II.2}$$

where μ is the dynamic viscosity, T is the temperature, $AM = -3.4016 \times 10^{-9}$, $BM = 6.2332 \times 10^{-7}$, $CM = -4.5577 \times 10^{-5}$ and $DM = 1.6935 \times 10^{-3}$.

In order for the variable density to have an effect on the flow, gravity must be set to a non-zero value. $g = -9.81 \underline{e}_z$ will be specified in the Graphical Interface.

3.4 Time stepping parameters

All the parameters necessary to this study can be defined through the Graphical Interface, except the advanced post-processing features, that have to be specified in user routines.

time stepping parameters		
Reference time step	$0.1 \ s$	
Number of iterations	100	
Maximal CFL number	20	
Maximal Fourier number	60	
Minimal time step factor	$0.01 \ s$	
Maximal time step factor	$70 \ s$	
Time step maximal variation	0.1	

The time step limitation by gravity effects will also be enabled.

3.5 Output management

In a first step, standard options for output management will be used. Four monitoring points will be created at the following coordinates:

Probe	$\mathbf{x}(\mathbf{m})$	$\mathbf{y}(\mathbf{m})$	$\mathbf{z}(\mathbf{m})$
1	0.010025	0.01534	-0.011765
2	1.625	0.01534	-0.031652
3	3.225	0.01534	-0.031652
4	3.8726	0.047481	7.25

Two vertical temperature profiles will be extracted, at the following locations:

Profile	$\mathbf{x}(\mathbf{m})$	$\mathbf{y}(\mathbf{m})$	$\mathbf{z}(\mathbf{m})$
profil16	1.6	0	$-0.2\leqslant z\leqslant 0.2$
profil32	3.2	0	$-0.2\leqslant z\leqslant 0.2$

A period of 10 will be associated to the output writer.

3.6 User routines for advanced post-processing

The following files must to be copied from the folder \ominus SRC/REFERENCE into the folder \ominus SRC¹:

- cs_user_postprocess.c;
- cs_user_postprocess_var.f90.

In this test case, advanced post-processing features will be used. A clip plane will be created, along the symmetry plane of the domain, on which the temperature will be written. This plane will be added to the standard **writer** (*i.e.* it will be an extra part in the standard **RESULTS.case** output). The periodicity of output on the standard writer will be 10 iterations.

An additional writer will also be created, with a periodicity of 5 iterations. It will only contain one part (*i.e.* one sub-mesh): the set of cells where the temperature is lower than 21° C. The temperature will be written on this part. The interest of this part is that it is time dependent as for the cells it contains.

The following user functions and subroutines will be used:

• cs_user_postprocess_meshes (in cs_user_postprocess.c) This function is called only once, at the beginning of the calculation. It allows to define the different writers and parts.

¹Only when they appear in the \boxdot SRC directory will they be taken into account by the code.

In this function, adapt the block using the cs_post_define_volume_mesh_by_func, replacing He_fraction_05 with T_lt_21 (do not forget to set the enclosing test to true). If the argument matching the automatic variables output is set to true, all variables (including temperature) postprocessed on the main output will be added to this one. For finer control, we set it to false here, and we will use a user-defined output with cs_user_postprocess_var. The associated writer list should contain writer 1, which may be created either using the GUI, or the cs_user_postprocess_writers (in the same file). Make sure this writers allows for transient connectivity. The _he_fraction_05_select near the beginning of the file must also be adapted, renaming it to _t_lt_21_select, and adapting its contents (mainly calling cs_field_by_name on temperature instead of He_fraction, and replacing > 5.e-2 with < 21). This selection function is called automatically at each output time step so as to update the selected sub-mesh.

• cs_user_postprocess_var.f90

This routine is called at each time step. It allows to specify which variable will be written on which part (in this case, temperature).

3.7 Results

Figure II.3 shows the evolution of the temperature in the domain at different time steps. The evolution of the stratification is clearly visible.

Figure II.4 shows the cells where the temperature is lower than 21°C. It is not an isosurface created from the full domain, but a visualization of the full sub-domain created through the post-processing routines.

Figure II.3: Evolution of the temperature

Figure II.4: Sub-domain where the temperature is lower than $21^{\circ}C$ (upper figure) and localization in the full domain (lower figure)

Part III

Step by step solution

1 Detailed tutorial step by step

1.1 Creation of the study in a terminal

The first thing to do before running *Code_Saturne* is to prepare the computation directories. In this example, the study directory $\boxdot T_junction$ will be created, containing a single calculation directory $\boxdot case1$. This is done by typing the command:

```
$ code_saturne create -s T_junction -c case1
```

1.2 Preparing and launching *Code_Saturne* **computation**

After that, the next steps are:

- Open the *Code_Saturne* interface;
- Create a new file;
- Select the mesh that will be used;
- Select the **unsteady flow** item under the **Calculation features** heading;
- Select a k- ε LP turbulence model;
- Add a thermal scalar in Celsius degrees.

In the item **Reference values**, under the heading **Physical properties**, set the reference value for velocity to $0.03183 \ m.s^{-1}$.

<u>File E</u> dit <u>T</u> ools <u>W</u> indow <u>H</u> elp		
🖸 🗁 🖄 🚳 📭 😒 🦿		r : 2 ×
Study: stratified_junction		
Case: case1		
XML file: /home/TM178B0N/Code_Saturne	z/Tutorials/stratified_junction/case1/DATA/case1.xml	
8		
Identity and paths	Reference pressure	
🕀 🛅 Calculation environment	Reference value for total pressure 101325.0 Pa	
🕀 🛅 Thermophysical models		
🖃 🛅 Physical properties	Reference velocity	
Reference values	Reference value for velocity 0.03183 m/s	
Fluid properties		
📑 Gravity	Reference length	
🕀 🛅 Volume conditions	Reference length Automatic Y	
🕀 🛅 Boundary conditions		
🕀 🛅 Numerical parameters	(used for initialization of turbulence)	
🕀 🛅 Calculation control		
🕀 🛅 Calculation management	Reference temperature	
	Reference temperature 1273.15 C	
	(used for properties initialization)	
· · · · · · · · · · · · · · · · · · ·		

Figure III.1: Physical properties: reference values

In the item **Fluid properties**, under the heading **Physical properties**, enter the following information:

Variable	Type	Value
Density	User law	998.671 $kg.m^{-3}$
Viscosity	User law	$0.445 \times 10^{-4} \ kg.m^{-1}.s^{-1}$
Specific Heat	Constant	$4182.88J.kg^{-1}.^{\circ}\mathrm{C}^{-1}$
Thermal Conductivity	Constant	$0.601498 \ W.m^{-1}.K^{-1}$

For density and viscosity, the value given here will serve as a reference value (see user manual for details).

EDF R&D

<u>F</u> ile <u>E</u> dit <u>T</u> ools <u>W</u> indow <u>H</u> elp			
i 📄 🚘 🏊 🔕 🃭 i 🕤 👌 🤅 i	🔲 🗾 🦗		S
			@ X
Study: stratified_junction			
Case: case1			
VML file: //bomo/TM178BON/Code_Saturn	Tutorials/stratified_iupst		
	e/ rutoriats/stratilied_junct	IOI/Case1/DATA/Case1.XIIIC	
@ X			
ldentity and paths			
Calculation environment		material user material 🗸	
🕀 🛅 Thermophysical models		rested for the	
🖃 🛅 Physical properties		method user properties 🗸	
Reference values			
Fluid properties		reference user_material	
🗒 Gravity			
🕀 🛅 Volume conditions	Density		
🕀 🛅 Boundary conditions		variable 🗸 🛃	
🕀 🛅 Numerical parameters			
🕀 🛅 Calculation control		Reference value p 998.671 kg/m ³	
🕀 🛅 Calculation management	Viereeltee		
	viscosity		
		variable 💙 📆	
		Reference value µ 0.001445 Pa.s	
	Specific heat		
		constant V	
		Reference value Cp 4182.88 J/kg/K	
	Thermal conductivity		
		constant 👻 🕙	
		Reference value à 0 601498	
· · · · · · · · · · · · · · · · · · ·			

Figure III.2: Physical properties: fluid properties

For the density and viscosity, enter the expressions of the user laws as showed in figures III.3 and III.4, in the windows poping while clicking on the highlighted boxes.

Figure III.3: Variable density

Figure III.4: Variable viscosity

The aim of the calculation is to simulate a stratified flow. It is therefore necessary to have gravity. Set it to the right value in the item **Gravity** under **Physical properties**.

Figure III.5: Fluid properties: gravity

In the item Initialization under the heading Volume conditions, set the initial value of the temperature in the domain to 38.5° C. Initialize the turbulence with the reference velocity $0.03183 \ m.s^{-1}$.

Figure III.6: Thermophysical models: initialization

Create the boundary regions.

Colors	Conditions
2	inlet
6	inlet
7	outlet
5	wall

y: stratified_junction					
casel					
file: /home/TM178B0N/Code_Satu	ırne/Tutorials/stratifi	ed_jun	ction/cas	el/DATA/casel.xml	
0 8					
ldentity and paths	Definition of b	ounda	ry regior	15	
Calculation environment	Label	Zone	Nature	Selection criteria	
Thermophysical models	cold_inlet	1	Inlet	2	
Physical properties	wall	2	Wall	5	
Volume conditions	hot_inlet	3	Inlet	6	
Definition of boundary regi	outlet	4	Outlet	7	
Boundary conditions				-	
Numerical parameters					
Calculation control					
Calculation management					
				Add Detete	
	Add from Pr	ергосе	essor list	ting	
			Import g	roups and references from Preprocessor listing	

Figure III.7: Boundary regions

For the inlet boundary conditions, the velocity is $0.03183 \ m.s^{-1}$ in the z direction and the hydraulic diameter 0.4 m for both inlets. For the scalar boundary conditions, the temperature of the cold inlet is 18.6° C and that of the hot inlet is 38.5° C. The outlet and wall boundary conditions remain with their default values.

- Cold inlet:

Study: stratified_junction Case: case1 XML file: [home/TM178B0N/Code_Saturne/Tutorials/stratified_junction/case1/DATA/case1.xml Wall 2 wall 5 Calculation environment Calculation environment Calculation environment Calculation of boundary regi Boundary conditions Calculation control Calculation management Velocity Calculation management Turbulence Calculation by hydraulic diameter ? Hydraulic diameter 0.4 m] 🖨 🖄 🔕 📭 🔬 è 🛛	🔲 🗾 🦃					5 0
Case: case1 XML file: [/home/TM178B0N/Code_Saturne/Tutorials/stratified_junction/case1/DATA/case1.xml XML file: [/home/TM178B0N/Code_Saturne/Tutorials/stratified_junction/case1/DATA/case1.xml Wall 2 wall 5 hot_inlet 3 inlet 6 outlet 4 outlet 7 Physical properties Volume conditions Definition of boundary regi Velocity Velocity Calculation control Calculation management Uelocity Turbulence Calculation by hydraulic diameter Wydraulic diameter Wydraulic diameter Wydraulic diameter Velocity Hydraulic diameter O.4 m	udy: stratified_junction						
XML file: /home/TM178B0N/Code_Saturne/Tutorials/stratified_junction/case1/DATA/case1.xml Image: Strate interval	se: casel						
Wall 2 wall 5 Image: Calculation environment 5 hot_inlet 3 Calculation environment 0 0 0 Physical properties 0 0 0 Boundary conditions 0 0 0 Definition of boundary regi Velocity 0 Numerical parameters 0 0 0 Calculation contol 0 0 0 Calculation management 0 0 0 Turbulence Calculation by hydraulic diameter ?	1L file: /home/TM178B0N/Code_Saturne,	/Tutorials/stratifi	ed_junction/c	ase1/DATA/cas	e1.xml		
identity and paths Calculation environment Thermophysical models Physical properties Volume conditions Boundary conditions Definition of boundary regi Boundary conditions Calculation control Calculation management Uelocity Numerical parameters Calculation management Turbulence Calculation by hydraulic diameter Hydraulic diameter 0.4 m	0 🛛 🗍						
 bentity and paths calculation environment Physical properties Volume conditions Boundary conditions Definition of boundary regi Boundary conditions Calculation control Calculation management Calculation management Calculation management Calculation by hydraulic diameter Mydraulic diameter Hydraulic diameter Mydraulic diameter Thermal 	ldentity and paths	wall	2	wall	5		^
 Cutcution of Numerical Constraints Physical models Volume conditions Boundary conditions Definition of boundary regi Velocity Calculation control Calculation management Calculation management Calculation by hydraulic diameter Mydraulic diameter Hydraulic diameter Mydraulic diameter Thermal 		hot_inlet	3	inlet	6		
 Intermeter of the second sec	Thermophysical models	outlet	4	outlet	7		
 Calculation management Velocity Calculation control Calculation management Velocity Calculation control Calculation management Turbulence Calculation by hydraulic diameter v Hydraulic diameter 0.4 m 	Physical properties						
 Boundary conditions Definition of boundary regi Boundary conditions Numerical parameters Calculation control Calculation management Calculation management Calculation by hydraulic diameter Hydraulic diameter Hydraulic diameter 	Volume conditions						
 Definition of boundary regi Boundary conditions Numerical parameters Calculation control Calculation management Calculation management Calculation by hydraulic diameter Provide the intervalue Provide the intervalue<td>Boundary conditions</td><td></td><td></td><td></td><td></td><td></td><td></td>	Boundary conditions						
Boundary conditions Numerical parameters Calculation control Calculation management Turbulence Calculation by hydraulic diameter Hydraulic diameter 0.4 m	Definition of boundary regi	Velocity					
 Numerical parameters Calculation control Calculation management Calculation management Turbulence Calculation by hydraulic diameter Hydraulic diameter 0.4 m 	Boundary conditions	velocity			[
Calculation control Direction Direction Calculation to the inlet Turbulence Calculation by hydraulic diameter Hydraulic diameter Hydraulic diameter 0.4	🛅 Numerical parameters	nor	m	×	0.03183	m/s 📆	
Calculation management Turbulence Calculation by hydraulic diameter	Calculation control	Dire	ction		normal direction	to the inlet 🗸 🛛 🕅	
Turbulence Calculation by hydraulic diameter	Calculation management						
Hydraulic diameter 0.4 m Thermal		Turbulence		Calculation b	y hydraulic diamet	er 🗸 🖉	
Thermal				Hydraulic dia	umeter 0.4	m	
temperature Value 18.6		Thermal	temperature	e 🗸	Type Prescribed v	value 🗸 🖉	

Figure III.8: Cold inlet boundary condition

- Hot inlet:

dy: stratified_junction						
a: casel						
file: //home/TM178B0N/Code_Saturne/	'Tutorials/stratif	fied_junction/c	ase1/DATA/cas	el.xml		
Ø X [
Jentity and paths	wall	2	wall	5		_
Calculation environment	hot_inlet	3	inlet	6		
Thermophysical models	outlet	4	outlet	/		
Physical properties						
Volume conditions						
Boundary conditions						
Definition of boundary regi	Velocity					
Boundary conditions	nc	orm	~	0.03183	m/s 🕑	
Colculation control						
	Dir	ection		normal direction t	o the inlet V	
	Turbulence	e				
			Calculation b	y hydraulic diamete	r 🖌 🛃	
			Hydraulic dia	meter 0.4	m	
			,			
	Thermal					
			[·	Type Prescribed v	alue 🔽 🌌	
				Type Tresenbed W		
		temperatur	e 🗡 🔤	Value	385	

Figure III.9: Hot inlet boundary condition

Go to the item **Equation parameters** under the heading **Numerical parameters** to specify the minimal and maximal values for the temperature: 18.26°C and 38.5°C. Note that the initial value of 38.5°C set earlier is properly taken into account.

	S
	8
Study: stratified_junction	
Case: casel	
XML file: /home/TM178B0N/Code_Saturne/Tutorials/stratified_junction/case1/DATA/case1.xml	
Ø 8	
R Identity and paths	
Identity and parts	
Calculation environment Minimal Maximal	
Physical properties value value value	
The second secon	
🖻 🛅 Boundary conditions	
Definition of boundary regi	
Boundary conditions	
🖻 🛅 Numerical parameters	
📄 Global parameters	
Equation parameters	
Time step	
Calculation control	
Calculation management	
C ()	

Figure III.10: Scalar initialization

Tick the appropriate box for the time step to be variable in time and uniform in space. In the boxes below, enter the following parameters:

Parameters of calculation	$\operatorname{control}$
Number of iterations	100
Reference time step	0.1 s
Maximal CFL number	20
Maximal Fourier number	60
Minimal time step	$0.01 \ s$
Maximal time step	$70 \ s$
Time step maximal variation	0.1

Then, activate the option Time step limitation with the local thermal time step

<u>F</u> ile <u>E</u> di	it <u>T</u> ools <u>W</u> indow <u>H</u> elp 2 🕑 🔇 🎼 🖄 🖑		S 0 2
Study:	stratified_junction		
Case:	casel		
XML file:	/home/TM178B0N/Code_Saturn	ne/Tutorials/stratified_junction/case1/DATA/case1.xml	
	0 ×		
📄 Ide	entity and paths alculation environment	Time step option Variable	~
+ 🔁 Th	ermophysical models hysical properties	Reference time step	0.1 s
⊕ 🛅 Vo	olume conditions oundary conditions Definition of boundary regi	Number of iterations (restart included)	100
	Boundary conditions umerical parameters	Maximal CFL number	20.0
	Global parameters Equation parameters	Maximal Fourier number	50.0
	Time step	Minimal time step factor	0.01
🗄 🔂 Ca	alculation control	Maximal time step factor	70.0
		Time step maximal variation	0.1
		Time step limitation with the local thermal time step	Ø
		Option zero time step	
¢ (2		

Figure III.11: Time step

Set the frequency of post-processing for the main writer results to 10.

<u>F</u> ile <u>E</u> d	it <u>T</u> ools <u>W</u> indow <u>H</u> elp							
	i 🖎 🔕 📭 🖄 👌	🔲 💟 🦗				្រ		
						0		
Study:	stratified_junction							
Case:	casel							
XML file:	/home/TM178B0N/Code_Saturne	/Tutorials/stratified	_junction	/case1/DATA/case1	.xml			
	0 % (
lde	antity and naths	Output Control	Writer	Mesh Particles n	nesh Monitoring Points			
	loulation environment	output controt		ricon randeteo n	rionitoning romes			
🕀 🧰 Th	ermophysical models	Name		ld	Format	Directory		
🕀 🚺 Ph	ysical properties	result	s	-1	EnSight	postprocessing		
🕀 🛅 Vo	lume conditions							
🕀 🛅 Bo	undary conditions							
🕀 🛅 Nu	umerical parameters							
🗆 🛅 Ca	lculation control							
	Time averages							
	Output control							
	Volume solution control							
	Surface solution control							
B	Profiles							
B	Balance by zone	by zone Frequency						
E Calculation management Output every 'n' time steps 10								
			e Outpui	at end of calculation	on			
		Time-depender	1CV					
				Fixed	mach			
				Tixed	inesit .			
		Options						
		· ·		format	binary (native)			
				Torride				
				polygons	display 🗸			
				polyhedra	display 🗸			
<								

Figure III.12: Output management

Create four monitoring probes at the following coordinates:

Probes	x(m)	y(m)	z(m)
1	0.010025	0.01534	-0.011765
2	1.625	0.01534	-0.031652
3	3.225	0.01534	-0.031652
4	3.8726	0.047481	7.25

Figure III.13: Monitoring points

For the advanced post-processing features, copy to the \bigcirc SRC directory the files cs_user_postprocess.c and cs_user_postprocess_var.f90. The general content of these routines is described in the user manual or in the examples available in the directory \bigcirc SRC/REFERENCE. The modified routines adapted to this test case are available in the examples directory. Only the main elements are mentioned here.

- cs_user_postprocess_meshes (in cs_user_postprocess.c): This is called only once, at the beginning of the calculation. It allows to define the different writers and parts.
- cs_user_postprocess_var.f90:

This routine is called at each time step. It allows to specify which variable will be written on which part.