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Abstract
Since its original introduction in Durbin (1991),

more than 15 different versions of the v2 − f model
have been proposed, the purpose of most of them being
to cure the recognised numerical stiffness associated
to the original formulation. Even though comparisons
of variants show results do not significantly differ from
one another on near-wall cases (Laurence et al. (2004),
Hanjalić et al. (2004)) a large variability exists in the
choice of equations source terms and constants of the
resolved turbulent variables, particularly for the dissi-
pation rate ε equation. As it will be seen, this yields
difference of behaviour in fundamental flows.

Based on the review of nine of these v2 − f vari-
ants, with emphasis on the modelling employed for
the ε equation, the present work proposes a modifica-
tion to: 1) reduce the inter-dependance of the equation
terms, hence making the model calibration easier and
2) incorporate additional information to facilitate the
prediction of the outer edge of a boundary layer cor-
responding of the so-called defect layer in a channel
flow.

The modification is implemented into the “code-
friendly” elliptic-blending based v2 − f model of Bil-
lard et al. (2008), namely the ϕ − α model, but could
be used along with any ε based turbulence model. By
resolving the elliptic blending parameter α and the
near-wall anisotropy ϕ = v2/k instead of v2 and f ,
the ϕ − α model was shown to address the numerical
stability issue without impairing the predictive accu-
racy, unlike other “code-friendly” v2− f formulations
for which terms are neglected (Billard et al. (2008)).
Moreover, since the primary concern of the ϕ − α
development was the model robustness and its easy
implementation into an industrial purpose segregated
solver, the proposed ε equation modification follows
the same philosophy. The resulting model has been
validated using the open source finite volume collo-
cated code Code Saturne (Archambeau et al.). Valida-
tion results are presented in the cases of two pressure-
induced separating flows, the asymmetric plane dif-
fuser of Buice and Eaton (1997) and the flow over
periodic hills of Temmerman and Leschziner (2001),

where the correct prediction of the mixing layer be-
tween the bulk and the re-circulating flow is crucial.

1 Rationale
The ε equation in v2− f models: The v2− f mod-
els use the empirical form of the k − ε equations as
originally proposed by Jones and Launder (1972), re-
formulated as in Durbin (1991):


Dk
Dt = P − ε+Dt

k + ν∂2
j k

Dε
Dt = 1

T (Cε1P − Cε2ε) +Dt
ε + ν∂2

j ε
(1)

where T = max
[
k/ε, CT

√
ν/ε
]
, Dt

k =

∂j (νt/σk∂jk) and Dt
ε = ∂j (νt/σε∂jε)

This system determines baseline behaviour of fun-
damental flows, which involve only some of the source
terms amongst P , ε, Dt

k and Dt
ε and this helps cal-

ibrate the constants associated to them, respectively
Cε1, Cε2, σk and σε.

Table 1 summarises the involvement of each term
and constant in the different configurations: the coef-
ficients Cε2 and Cε1 yield unique values of the decay
rate in homogeneous isotropic turbulence (DIT) and
turbulence growth rate in homogeneous shear turbu-
lence (HST). Subsequently Cµ and σε provide the de-
sired value for uvk and κ in the logarithmic region of a
channel flow at infinite Reynolds number.

Mode P ε Dt
k Dt

ε Constants
DIT 3 Cε2
HST 3 3 Cε1
Defect Layer 3 3 3 Cε2, σk, σε
Log. Layer 3 3 3 Cε1,Cε2, σε
Near Wall 3 3 3 3 Cε1,Cε2,σk, σε

Table 1: Role of the different k and ε source terms in
the fundamental configurations



Adaptation to wall-bounded flows: Authors of
v2 − f models have adapted this standard system to
comply with wall-bounded flow requirements:

(a) A near-wall boosting of ε is needed in the buffer
layer to represent production by local anisotropy
(Durbin (1993))

(b) The constant Cε1 calibrated for homogeneous
shear turbulence was shown to yield incorrect
predictions in a boundary layer for which a larger
value is recommended (Durbin (1995)).

To this end, the original model of Durbin (1991)
(denoted in the following as DUR91) use a particu-
larly large value of the coefficient Cε1. Durbin (1993)
and subsequent authors suggested a functional C∗ε1
resulting in a blending between a larger near-wall
value and the standard value calibrated in homoge-
neous flow. Durbin (1993) (DUR93) relies upon a C∗ε1
dependance on the production over dissipation ratio,
whereas Durbin and Laurence (1996) (DUR96) alter-

natively uses
√
k/v2, noticing that the former sugges-

tion would impair numerical stability. The same is
used in Lien and Kalitzin (2001) (LIE01) (which is
the v2 − f version used in main commercial codes,
Fluent, Star-CD, StarCCM), in Manceau et al. (2002)
and in Uribe (2006) (URI06). Following a similar rea-
soning as the Elliptic Blending Reynolds Stress Model
(EBRSM) of Manceau and Hanjalić (2002) but applied
in an eddy viscosity framework, the ϕ − α model of
Billard et al. (2008)(BIL08) uses the same relation:

C∗ε1 = 1.44
(

1 + 0.04(1− α3)
√
k/v2

)
(2)

where the elliptic blending coefficient α switches from
0 at the walls to 1 in the far field.

Two models introduce the wall-distance param-
eter: Lien and Durbin (1996) (LIE96) proposes a
C∗ε1 dependancy on Ry = y

√
k/ν to achieve better

prediction of by-pass transition, and Durbin (1995)
relies on y to return distinct values of C∗ε1 in wall
bounded and free shear flows. However this is in
contradiction with the wall-distance free feature of
v2 − f modelling and it is generally avoided by
modellers.

Table 2 summarises the different terms and con-
stants used for the ε equation and figure 1 shows
a posteriori evaluation of C∗ε1 in a channel flow at
Reτ = 2000.

For all models except DUR91 and DUR95, a very
large value is returned in the near-wall region for the
C∗ε1 coefficient. Note that neither DUR91 nor DUR95
feature ε production enhancement and therefore do not
fulfil requirement (a).
Requirement (b) is satisfied for all models except
BIL08. Apart from the latter model, C∗ε1 is always sig-
nificantly larger than the standard value of 1.4-1.44.

In BIL08, the use of the elliptic blending parameter
α results in the model returning values of C∗ε1 in the
channel flow considerably smaller than those of other
models, and this has negative effects on wall-bounded
flow predictions, as it will be seen later on.

Interdependence: For most of the models, the in-
fluence of the C∗ε1 coefficient modifications, proposed
to meet requirements (a) and (b), extends beyond
the zones for which they are intended for. This is
visible in the channel flow, figure 1, where the C∗ε1
profiles show that for DUR96, LIE01, MAN02 and
URI06 the use of the structural parameter k/v2 makes
the C∗ε1 modification too intrusive: the influence of
the near-wall boosting extends to a large part of the
logarithmic region. The use of the wall-distance y
in LIE96 and the elliptic blending parameter α in
BIL08 enables to damp the C∗ε1 boosting outside the
near-wall region.

Table 3 presents the predictions of the Von Kármán
constant κ and the turbulent to mean strain time scale
η = S kε in the log region as well as the value taken by
ϕ = v2/k. The last two columns give the values of η
and C∗ε1 in HST for St → ∞. Note that in that latter
case, ϕ depends on whether the LRR-IP or the SSG
model for pressure strain is used by correponding au-
thors. The values are obtained by solving iteratively
the corresponding simplified equations. As seen on ta-
ble 3, the behaviour of the selected v2 − f models in
the logarithmic layer noticeably varies from one an-
other and κ often lies outside the range [0.38 − 0.41]
where the theoretical value should be. The first rea-
son for that is the known non local “amplification”
of the v2 redistribution term (Wizman et al. (1996),
Manceau et al. (2001)), yielding a too large value of
ϕlog = v2/k in the logarithmic layer for most of the
models, with the worst effects in LIE96 and LIE01.
The influence of this adverse effect on prediction of κ
is all the more important for models for which C∗ε1
depends on ϕ. However solutions to the amplifica-
tion effect were proposed by the same authors and
the problem was addressed in DUR96, MAN02 and
BIL08. The switch from elliptic relaxation to elliptic
blending in the latter model guarantees no amplifica-
tion. Secondly, the too large influence of the near-wall
region C∗ε1 modification has led modellers to adopt
various standard values of coefficients Cε1, Cε2 and
σε, since this inter-dependance makes all these coeffi-
cients function of C∗ε1, but these readjustments are not
enough to enable the theoretical Von Kármán constant
κ to be recovered.

It is also worth mentioning that for all reviewed
models except DUR95 and BIL08 the coefficient C∗ε1
never returns its standard value calibrated for homo-
geneous shear turbulence. As seen in table 3, for all
these models the value of this coefficient, C∗ε1,∞ is of
the same order as the value adopted in a channel flow,



Model C∗ε1 Cε2 σε Cµ
DUR91 1.7 2.0 1.3 0.2
DUR93 1.44

(
1 + 0.1Pε

)
1.9 1.3 0.23

DUR95
1.3 +

0.25/
[
1 +

(
CLy
2L

)8
]

1.9 1.3 0.19

DUR96 1.44
(
1 + 1

30

√
k

v2

)
1.85 1.5 0.16

LIE96
1.55 +

exp
(
−0.00285R2

y

) 1.92 1.5 0.19

LIE01 1.4
(
1 + 0.05

√
k

v2

)
1.9 1.3 0.22

MAN02 1.44
(
1 + 0.06

√
k

v2

)
1.91 1.3 0.22

URI06 1.4
(
1 + 0.05

√
k

v2

)
1.85 1.3 0.22

BIL08 Eq.2 1.83 1.22 0.22

Table 2: Valules of the ε coefficients for the different
models

Model κ ηlog ϕlog η∞ C∗ε1,∞
DUR91 0.34 3.31 0.46 4.55 1.70
DUR93 0.37 3.01 0.48 4.43 1.58
DUR95 0.41 2.72 0.71 6.78 1.30
DUR96 0.36 3.84 0.42 5.08 1.52
LIE96 0.51 2.16 1.13 4.87 1.55
LIE01 0.59 1.69 1.60 4.64 1.52
MAN02 0.40 3.20 0.44 4.43 1.53
URI06 0.41 2.77 0.59 4.49 1.51
BIL08 0.38 3.23 0.44 4.59 1.44

Table 3: Behaviour of the models in the logarithmic
region and in homogeneous shear turbulence

in contrast to requirement (b). The model of DUR95
is the only one able to recover the smaller value of 1.3
in free shear flows albeit by using the wall-distance.

2 The present proposal

The use of α in BIL08 enables the requirement (a) to
be met and the model behaviour outside the near-wall
region, as well as in the homogeneous flows is not af-
fected by the C∗ε1 modification. But requirement (b) is
not satisfied because a smaller value of 1.44 is returned
right from the inner edge of the logarithmic layer of a
channel flow, this being an adverse consequence of the
presence of α in the C∗ε1 definition. Whereas Durbin
(1995) uses the wall-distance to characterise a wall
bounded flow, the present work revisits an idea origi-
nally formulated in Parneix et al. (1996) who proposed
to use information about the turbulent transport of tur-
bulence to characterise the edge of a boundary layer,
corresponding to the defect layer of a channel flow.
Indeed, analysis of DNS data in channel flow shows
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Figure 1: C∗ε1 in a channel flow for Reτ = 2000. Top:
Models for which C∗ε1 depends on v2

k . Bottom: Other
models

that above the logarithmic layer, as velocity gradient
decreases, so does P , the turbulence is sustained by
transport terms, gradually becoming more and more
important towards the defect layer. In the k equation,
the equilibrium P = ε is then replaced by Dt

k = ε
towards the centre of the channel, as represented in ta-
ble 1. The standard values of the ε equation constants
are calibrated in a channel flow to represent the loga-
rithmic layer only. An analysis of the budget of the ε
equation, as performed in Parneix et al. (1996) shows
that the exact ε source term P1+P2+P3+P4−Y (us-
ing the same notation as Mansour and Rodi (1993)) is
loosely represented by the standard values Cε1 = 1.44
and Cε2 = 1.83 from the upper edge of the logarith-
mic layer, and Parneix et al. (1996) recommends Cε2
to be halved in the defect layer. To this end, the latter
authors suggest aCε2 dependancy onDt

ε and P . Note-
worthily, a better representation of the defect layer
cannot be achieved by a modification of C∗ε1 since the
production is zero in this region. Following the same
idea, a functionalC∗ε2 is proposed for the ϕ−αmodel:

C∗ε2 = Cε2 + αp (Cε4 − Cε2) tanh

(∣∣∣∣Dt
k

ε

∣∣∣∣3/2
)

(3)

This results in C∗ε2 going from the standard value
Cε2 in the logarithmic region to a decreased value of
Cε4 in the defect layer. The ϕ − α model integrat-



ing this C∗ε2 modification is described by equations 4,
5 and 6 and the values adopted by the constants are
given in table 4. Only coefficients CL and Cη needed
slight readjustment. The inclusion of the blending pa-
rameter α in relation 3 ensures the C∗ε2 modification
is not active near the wall, where turbulent transport is
present however.

8>><>>:
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Dt

= P − ε+ ∂j
““
ν + νt

σk

”
∂jk
”

Dε
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= 1
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CT CL Cη C1 C2 σϕ p
6 0.164 86 1.7 1.2 1 3
C∗ε1 C∗ε2 σk σε νt Cµ
Eq.2 Eq.3 1 1.22 CµϕkT 0.22

T L

max
[
k
ε , CT

√
ν
ε

]
CL max

[
k3/2

ε , Cη

(
ν3

ε

)1/4
]

Table 4: Constants of the present model.

The a priori evaluation of C∗ε2 given by relation
3 for different Reynolds numbers in a channel flow is
shown in figure 2. This relation yields a fairly Reτ in-
dependent characterisation of the central region of the
channel. As achieved in Parneix et al. (1996), the ex-
act source term of the ε equation is better represented
using the proposed C∗ε2, as shown in figure 3, whereas
the standard value 1.83 yields a too strongly negative
ε sink term. This discrepancy of the standard model
returns insufficient level of dissipation in this region
resulting in a well-known over-estimation of the tur-
bulent viscosity (Laurence et al. (2004)).

The predicted velocity and turbulent viscosity
given by the BIL08 model and the present proposal
are shown in figure 4 for the channel flow case at
Reτ = 2000. The turbulent viscosity returned by the
model BIL08 is over-predicted in the central region,
and this discrepancy is common to all v2 − f models,
they lack information characterising the defect layer.
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Figure 2: A priori evaluation of C∗ε2 from Eq.3 for
Reτ ∈ {180; 395; 590; 950; 2000}
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Figure 3: Main source term of ε, P1 +P2 +P4−Y , in
the central region of a channel flow, Reτ = 395. •• •:
Exact term (from Mansour and Rodi (1993)). Model
(1.44P − C∗ε2ε) /T with C∗ε2 = 1.83 (−−− ) and
with C∗ε2 from Eq.3 (— ) (all terms × (y+)2)

This is to be directly linked to the consistent ε under-
prediction

This νt over-prediction is however moderate with
BIL08 but was shown to be considerably larger for
models over-predicting v2 (for those depicting a strong
“amplification” effect, such as the popular “code-
friendly version of LIE96 and LIE01, as shown in
Uribe (2006)).

The present version yields a improved representa-
tion of νt in the central region, compared to BIL08,
thus leading to a improved mean velocity prediction.
The two models behave very similarly elsewhere.

With this C∗ε2 coefficient modification the ϕ− α
model satisfies both requirement (a) and (b). The
spreading rate control achieved by other v2−f models
using a higher value for C∗ε1 in wall bounded flows is
now ensured by a gradually decrease of C∗ε2 from the
outer edge of the logarithmic layer. Recalling that the
turbulence growth P/ε in a mixing layer is proportion-
nal to (Cε2 − 1) / (Cε1 − 1) then a increase of Cε1 is
equivalent to a reduction of Cε2.

3 Results on the pressure-induced
separating flows

The proposed modification was tested on two wall-
bounded separating flows: the asymmetric plane dif-
fuser of Buice and Eaton (1997) and the flow over pe-
riodic hills of Temmerman and Leschziner (2001). Be-
cause of the flows complexity, the three dimensional
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Figure 4: Prediction of the velocity profile (top) and
the turbulent viscosity (bottom) in a channel flow,
Reτ = 2000. • • •: DNS, — : Present model,
−−− : BIL08

and transient nature of the separation, the relevance of
simple eddy viscosity modelling in these cases may
be questioned (e.g. Sveningsson et al. (2005)), but
they have often been used to assess v2− f capabilities
and C∗ε1 modifications (Durbin and Laurence (1996),
Manceau et al. (2002), Iaccarino (2001)).

Figure 5 compares the periodic hill flow stream-
lines predicted by the ϕ− α without and with the C∗ε2
modification, the v2 − f model of LIE01, the k − ω
SST model of Menter (1994) and the reference LES
calculation. The model LIE01 represents a widely
used and validated v2− f version because it is the one
adopted by various CFD codes and is acknowledged
to yield very good predictions in such flows (Iaccarino
(2001)). On the other hand, the k − ω SST model
strongly over-predicts the re-circulation extent.

The model of BIL08 severely underestimates the
re-circulating flow. This is directly linked to an over-
prediction of the turbulent shear stress throughout the
domain because of the too small value of C∗ε1 returned
in wall bounded flow, and the C∗ε2 modification is in-
tended to remedy this issue. The present proposal in-
deed returns larger re-circulation compared to BIL08,
now of the same order as LIE01.

The same conclusion holds for the diffuser flow:
figure 6 represents the prediction of the re-circulation
for the same models, in terms of skin-friction and
pressure coefficient. As predicted by BIL08 the flow
does not separate whereas the present modification en-
ables the ϕ − α model to yield a separation and re-
attachement location close to the one observed ex-

perimentally and the predicted re-circulation is larger,
yielding a smaller pressure coefficient.

BIL08

Present formulation

LIE01

SST

Reference LES

Figure 5: Streamlines of the periodic hill flow. From
top to bottom: BIL08, present model, LIE01, k − ω
SST and LES of Temmerman and Leschziner (2001)

4 Conclusion
The present ϕ− α improvement enables the model to
perform as well as the “standard” v2 − f of Lien and
Kalitzin (2001) in wall bounded flows with a modi-
fication intended to leave unchanged the behaviour in
other configurations. Therefore the superior behaviour
of the ϕ − α in buoyancy driven and relaminarizing
flows (Billard et al. (2008)) is maintained. In the im-
proved version, more information is provided to the



−4

0

4

8

Cf

−10 0 10 20 30 40 50 60
x/h

0.0

0.4

0.8

Cp

Figure 6: Friction coefficient ×103 (top) and pressure
coefficient (bottom) in the diffuser case: • • •: Exper-
iment, — : Present model,− − − : BIL08, · · ·
: LIE01

dissipation rate transport equation, taking the form of
two parameters: The blending coefficient α takes the
value 0 in a thin near-wall layer and 1 elsewhere. The
turbulent transport of k over ε ratio (Dt

k/ε) takes the
value 1 at the edge of a boundary layer and 0 else-
where. The combination of both in the functionnal co-
efficients C∗ε1 and C∗ε2 is a way to correctly reproduce
different flow configurations in an independent way.
The presence of α in the C∗ε1 definition helps calibrate
the near-wall behaviour of the turbulent scales with-
out affecting other parts of the flow, and the coefficient
Cε4 included in the C∗ε2 definition can be modified to
achieve better predictions of wall-bounded flows with-
out changing the model behaviour in homogeneous
flows.
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