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Co-combustion

e Combustion of two different fuels in the same
combustion system (e.g. coal (~90% wt) and

biomass (~10% wt)).

— Reduction of CO, emissions

= Negative aspects:

(a) Neat coal.

o High slagging and fouling tendency

o High carbon content in fly and bottom ash

—» CFD modelling of co-combustion in order

to optimize the combustion process

(b) Coal+15% biomass.
» =
2~ EDF



Modeling approaches

Eulerian modeling of pulverized coal combustion

e Particles are assumed to be sufficiently small to adapt instantly to the local conditions

of the carrier field.

—y Transport equations are written for the gas/particle mixture assuming a

negligible slip-velocity between the gas phase and the fuel particles

Lagrangian modeling of biomass combustion — a post-processing approach

 Due to the increased inertial forces biomass particles do NOT instantly adapt to the
local conditions of the carrier field

— Lagrangian modeling of the particle movement.

e Mass fractions of biomass are assumed to be small

> Post-processing approach
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Langrangian modeling of biomass combustion

Particle motion

a) Momentum equation for dense particles
di, U

= + g where 7, = - -
dt Y P pr 3Cy|iis — G|

b) Closure is obtained through the use of a stochastic term

- 7, — (it _
dit, = ——V(P)dt — - f“f>dt +\/Coz dW
Pf 17
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where dW is an increment of the Wiener process and 1} =

 Physicochemical phenomena

a) Particle drying — pressure equilibrium assumption

: A L=,
o Mass transfer 1yep = 27rp—5ShIn T st where

C}O vap

0 .
o Heat transfer ®evap = Ly Tvap
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Langrangian modeling of biomass combustion

b) Devolatilisation — Kobayashi model

o Kinetic is given by two competitive reactions

dm,y,
o Mass transfer d; = — (k1 + k2) men, where -

o Heat release of the slightly endothermic reactions is neglected

c) Char combustion - C' + %Og — C'O

dm.y o0 where
o Mass transfer 7t — — 5, _POQKg]Qb _

1
o Heatrelease Arheomp = Ashoo(T)) — (Afhck(Tp) + §Afh02(Tf))

I All physicochemical phenomena depend on the particle temperature !
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Impact of the particle temperature profile

Time axis >
Raw fuel Dried fuel Char particle Ash patrticle
particle particle
Small particles e.g. — —_— . —_
coal
(no temperature

gradient)

Large particles e.qg.
biomass - : -
(temperature gradient)
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Combustion System

o Thermal power. 3MWth
o 10 m long; 1,5m diameter

\<gx

Inlet Mass flow rate Mass flow rate
Air (kg/s) Coal (kg/s)

Primary air (red) 0,19 0,125
Secondary swirled air (green) 0,64 -
Tertiary air (blue) 0,58 -
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Results: Flow field characteristics

» Simulated velocity field of the gas phase obtained using an Eulerian approach.

Y

. . Velocity[Z]

External recirculation 4870001

z 3.467e+01
2.065¢+01
6.623e+00

-7.401e+00

Three distinct recirculation zones can be observed
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Results: Coal particle movement

» Simulated particle motion of coal particles (25um) using a Lagrangian approach.

Sechage
Devolatilisation
Comb. heterogene

P | |
Lendare

—
) =

I Coal particles are sufficiently small to adapt instantly to local flow field changes !
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Results: Comparison coal/biomass

» Simulated particle motion of coal (25um) and biomass (800um) particles using a
Lagrangian approach.

coal mass

Time = 0.00100 818612 i

-12

< =
“ Coal
=

L g e
| Biomass 0. D0e+ 00

I Biomass particles do NOT instantly adapt to local flow field changes !
> Impact on the physicochemical phenomena
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Results: Biomass particle temperature

» Temperatures in the particle core (layerl) and the most outer layer (layerb);

Biomass particles 800um.

for ﬁ:faunt_Jany_Ol

1.348e+03
1.086e+03
8.240e+02
5.620e+02
2.999¢+02

articlg: [t ra[ur{:_laycr_OS

1.350e+03
1.086e+03
8.226e+02
5.590e+02
2.953e+02




Results: Impact on devolatilisation

» Coal mass fraction in the particle core (layerl) and the most outer layer (layer5);

Biomass particles 800um.

particle coal mass layer 01
2.667¢-08
2.000e-08
1.334e-08

0.068¢-09
0.000e+00

particle coal mass layer 05
2.667¢-08
2.000e-08
1.334e-08

0.068¢-09
0.000e+00




Results: Comparison of mono-/multilayer

» Coal mass fractions obtained considering (multi-layer) and neglecting (mono-layer)
temperature gradients inside the particles; Biomass particles 800um.

particle coal mass
1.334¢-07
1.000e-07
6.668¢e-08

3.334e-08
0.000e+00

particle coal mass
1.334¢-07

1.000e-07
6.668e-08

. 3.334¢-08
Multi-layer 0.000¢ 00

| Devolatilisation lasts longer !




Results: Comparison of mono-/multilayer

» Char mass fractions obtained considering (multi-layer) and neglecting (mono-layer)
temperature gradients inside the particles; Biomass particles 800um.

“particle coke mass
3.228¢-08
2.421e-08
1.614e-08
8.069¢-09
0.000e+00

"-\-.._-____________:_ e

3.209¢-08
2.406e-08
1.604e-08

A Multilayer $ 0220

0.000e+00




Slagging models

Coal particles

He :
be sty >

. . e : - k=
The slagging probability is given by: 1 sty < e

= Additionally, a critical temperature condition is considered. If the particle temperature is
lower than the critical temperature T. it will not stick to the wall.

Biomass particles I Not available yet !

» The slagging probability is a fu melted ash mass fraction

Myilice
Mgel T Milice

KR = Yf,sel (Tp) Yf,silice (Tp)

m

= Additionally, a critical temperature condition is considered. If the particle temperature is
lower than the critical temperature it will not stick to the wall
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Results: Slagging of coal particles

= Mass flux of deposited particles for several critical temperatures T, and viscosities [,

¥ Part_fouled mass_flux

High deposition L’, 2 s44e08
- " s
0.000e-+00

106 1173

104 1273 . Pat_fouled_mass_flux
- 2

768 1400

Low deposition
rate

Par_fouled mass_flux

9.898¢-09

z 7.424e-09

x 4.949¢-09
17

2475¢-09

L J
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Results: Slagging of biomass particles

= Mass flux of deposited particles for several critical temperatures T,

Part_fouled mass_flux

1.739¢-03
I..\U-:c-ﬂi
. L X B.693¢-

High deposition J.Rcch.!IJH

0.000e+00

rate

¥ Part_fouled mass flux

1 OOO 1.754e-03
% 1.316¢-03

'3 8.77e-04

4.385¢-04

0,000e+00

Low deposition
rate
¥ Part_fouled mass flux
'{) . 2.998¢-04
. : Fiooc0q
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Conclusion

» Slipping velocities between the gas phase and the fuel particles are considered
applying the Lagrangian approach

o Coal particles adapt instantly to local flow field changes.
o Biomass particles don’t adapt instantly to local flow field changes.

= Determination of particle temperature profiles by means of a multilayer model
o The temperature profile has a significant impact on the devolatilisation process.

o Better prediction of the particle composition (coal, char, ash and moisture content) at
the outlet.

o Differences concerning unburned carbon can be neglected.

» Implementation of a slagging model which allows to predict the areas where
slagging is more likely to occur
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Thank you for your
attention
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