Modeling and simulation at EDF Didier BANNER

Modelling and simulation - what for ?

Justifying installations

- Identification of new safety margin ie. thermal shock on vessel
- Evolution of regulations and rules
- Analysis of accidental situations non reproducible by experiments
 i.e., severe accidents, fire propagation, geological disposal

Understanding physics or system response

- Ageing of materials and installations i.e loads,
- Addressing the issue of uncertainties and identifying the prominent parameters

Qualifying and optimizing processes

- NDT methods
- Optimizing equipment i.e combustion, cooling systems

The need for a complete chain of skills and tools

1- Modelling : from physics to equations Navier-Stokes

$$\begin{split} \frac{1}{\mathbf{v}} \frac{\partial \phi(\vec{r},\vec{\Omega},E,t)}{\partial t} &= -\left[\vec{\Omega}\cdot\vec{\nabla} + \Sigma(\vec{r},E)\right] \phi(\vec{r},\vec{\Omega},E,t) + \\ \frac{\chi(\vec{r},E)}{4\pi} \int dE' \mathbf{v} \Sigma_f(\vec{r},E') \int d^2 \Omega' \, \phi(\vec{r},\vec{\Omega}',E',t) + \\ \int dE' \int d^2 \Omega' \, \Sigma_s(\vec{r},\vec{\Omega}'\leftarrow\vec{\Omega},E\leftarrow E') \phi(\vec{r},\vec{\Omega}',E') + Q_e(\vec{r},\vec{\Omega},E,t) \end{split}$$

2- Analysing and coding :

from equations to algorithms and codes Solvers

3- Adaptation to computers architectures for HPC

Code_Saturn, massively parallel

Chemistry-hydraulics of Berre Lagoon

The need for a complete chain of skills and tools

4- Validating and identifying : on benchmarks and experimental campaigns, determination of physical parameters V& V requirements

5-Pre and post processing : *Meshing, visualisation, error computation and mesh adaptation*

The need for a complete chain of skills and tools

7- Qualifying : determination of validity domains of methodology in real life applications

CFD – Code_Saturne – Main Priorities

Verification and Validation, Uncertainty Quantification

• According to Int'l and EDF rules

Interoperability – towards a fully packaged product

Salome Platform

Improved physics

• Heat transfer

Anticipation

- Assessment of advanced CFD methods
- Next Generation of Nuclear T/H (reactor cores, SGs, ...)

THE SALOME MODELLING ENVIRONNEMENT

EDF R&D | 09/2013 | 25

The open source way for in-house developed codes and systems

Code_Saturne, Code_Aster, Telemac, Open-Turns, Salomé

Improving the codes :

- By validation, bug detection,
- Extension of validity domain or to new simulation domains

Sharing development effort

- Development induced in the community
- Open codes can be coupled with other ones in multiphysics or multi purposes platforms
- Sharing validation effort

Facilitating collaboration

- With academia (no licence, capitalisation tool, .)
- With industrial partners (interaction with others codes,
- Facilitating dissemination acceptance of methods

Support to education

- For students and initial formation
- Building a community of end-users

Thanks for your attention

