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Analysis of the results 
 

It is assumed that the standard verifications have been carried out as recommended in the previous 
cards (convergence in time and space, coherence of the mesh with the selected turbulence model, 
conservation of the quantities that shall be conserved). In the present document, the physical 
relevance of the results obtained with the selected modelling will be examined. It is advisable to pay 
attention to the following points. 

A posteriori verification of the hypotheses 

• Verify a posteriori that the hypotheses adopted when selecting the models are effectively 
valid: in particular, evaluate the relevant non-dimensional numbers (Reynolds, Rayleigh, 
Froude… y+ for the mesh at the wall…) from the results of the calculation.  

Length- and time-scales  

• The integral length-scale: it can be approximately evaluated from RANS results as LT = α k3/2/ε 
with α  ranging approximately from 0.1 to 0.3, k the turbulent kinetic energy and ε the 
associated dissipation. LT represents the size of the large structures: in particular, it must be 
smaller than the characteristic size of the computational domain. A significantly too large value 
for LT may indicate that the turbulence model is not well suited: if a first-order model has been 
selected (k-epsilon or k-omega), one may envisage to use a second-order model (Rij).  

o In a channel flow with a hydraulic diameter Dh, the integral length-scale is 
LT = min(0.42 y; 0.1 Dh), with y standing for the distance from the wall.  

o For shear flows (jets or wakes), one may consider as a first approximation (Rodi 
1984) that LT is 10% of the width δ of the shear layer (δ being defined as the distance 
between the two points located on both sides of the shear layer and where the 
velocity differs of 1% of the velocity at infinity; for symmetrical flows, δ is the distance 
between the axis of symmetry and the point where the velocity differs of 1% of the 
velocity at infinity).  

• The time-scale for turbulence: it can be evaluated approximately from RANS results as k/ε, 
with k the turbulent kinetic energy and ε the associated dissipation. It indicates the life-time of 
a turbulent structure. Using k/ε and the mean convective velocity U, one may determine the 
length necessary for the turbulence to develop: U k/ε.  

Turbulent variables 

• The ratio νt/ν: it is the ratio between the turbulent dynamic viscosity and the molecular 
dynamic viscosity, for calculations using the high Reynolds k-epsilon model. For calculations 
with wall-functions, this ratio should be νt/ν > 10 at the wall, if the first cell adjacent to the wall 
is large enough (except at singular points: detachment, reattachment…). This condition 
corresponds approximately to y+ > 25 (indeed, in a plane channel flow, the following relation 
holds: νt = 0.42 y u*). Otherwise, the boundary layer representation is probably wrong and it 
may be necessary to modify the mesh or at least to investigate the relevance of the modelling 
at the wall.  

Correlations 

• Head losses: when head losses can be evaluated a priori from correlations (Idel’cik 1960), 
check that the code provides pressure variations in reasonable agreement (a difference of 
20% may be considered acceptable). A significant deviation may indicate that the mesh is not 
fine enough or that the turbulence modelling is not satisfying. Simplified formulae are provided 
hereafter to evaluate the pressure loss ∆P in some specific cases for an incompressible flow 
with a density ρ: 

o Smooth pipe of hydraulic diameter Dh, of length L, for an established (L/Dh > 50 or 
100) and turbulent (Reynolds Re = UDh/ν > 5000) flow: a rough approximation of the 
pressure loss is ∆P/(½ ρ U2) = 0.02 L/Dh and more accurate correlations read:  

∆P/(½ ρ U2) = 0.3164 Re-0.25 L/Dh  for  5 000 < Re <      30 000 
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∆P/(½ ρ U2) = 0.184 Re-0.20 L/Dh  for 30 000 < Re < 1 000 000 

o Sudden pipe expansion from a section SA (velocity UA) to a section SB:  

∆P/(½ ρ UA
2) = ((SB-SA)/SB)2 

o Sudden pipe contraction from a section SA to a section SB (velocity UB) :  

∆P/(½ ρ UB
2) = ½ ((SA-SB)/SA) 

o Smooth pipe bend at 90°, with a curvature radius R and a diameter Dh, with a circular 
or a square section: very approximately, one may remember that ∆P/(½ ρ U2) 
decreases from 1.20 to 0.22 for R/Dh varying from 0.5 to 1.0 and remains 
approximately constant for R/Dh varying from 1.0 to 5.0; for a pipe bend at 180°, one 
should multiply the pressure loss by 1.4 approximately. 
More precisely (Idel’cik 1960, p.192), the pressure loss consists of a term due to the 
bend (decreasing with R/Dh) and of a term due to the friction (increasing with R/Dh):  
 - For a bend at 90°: 

∆P/(½ ρ U2) =        0.21/(R/Dh)
2,5 + 0.00035x 90 R/Dh for 0.5 < R/Dh < 1.0 

∆P/(½ ρ U2) =        0.21/(R/Dh)
1/2 + 0.00035x 90 R/Dh for 1.0 < R/Dh  

 - For a bend at 180°: 

∆P/(½ ρ U2) = 1.4x0.21/(R/Dh)
2.5 + 0.00035x180 R/Dh for 0.5 < R/Dh < 1.0 

∆P/(½ ρ U2) = 1.4x0.21/(R/Dh)
1/2 + 0.00035x180 R/Dh for 1.0 < R/Dh  

• Heat exchange: when the heat exchange can be evaluated from simple correlations 
(Sacadura 1980) or (Taine 2003), it is advised to check that the code predicts a reasonable 
heat flux. Some simplified formulae are provided hereafter to evaluate the Nusselt number Nu 
(non-dimensional heat flux) in specific configurations for an incompressible flow, with ρ the 
density, T∞ the temperature at infinity, λ the thermal conductivity, Pr = ν/a the Prandtl number 
(with a=λ/(ρCp) and ν the kinematic viscosity), β=−1/ρ (∂ ρ/∂ Τ)|P the density variation with 
temperature at constant pressure and g the acceleration of gravity:  

o For the forced convection in a smooth pipe of length L and of hydraulic diameter Dh, 
with L/Dh > 60, for a turbulent flow with a Reynolds number Re=UDh/ ν such that 
10 000 < Re < 120 000 and for a Prandtl number such that 0.7 < Pr < 100 (properties 
evaluated at (T∞+Tp)/2), the mean heat flux over the length L is Φ = Nu λ (T∞-Tp)/Dh 
with Nu computed as:  

Nu = 0.023 Re0.8 Pr1/3 (Colburn) 

o For the natural convection on a vertical flat plate of height L at a constant temperature 
Tp, with a Rayleigh number Ra = g β ∆T L3/(νa) such that 109 < Ra < 1013 (properties 
evaluated at (T∞+Tp)/2), the mean heat flux is Φ = Nu λ (T∞-Tp)/L with Nu computed 
as:  

Nu = 0.13 Ra1/3  (Mac Adams) 

• Jets: for an incompressible flow, a round jet emitted from an orifice into a large domain 
develops in two parts; first, a “potential” kernel cone (in which the velocity remains identical to 
the velocity at the orifice) progressively spreads out over a distance of approximately 8 times 
the diameter of the orifice; then, the velocity of the jet decreases as the inverse of the distance 
from the orifice (Viollet 1997 citing Abramovitch 1963).  

For the second part, where the centreline velocity decreases, correlations are available (Hug 
1970), and may help to assess the relevance of the results (or to a priori determine the 
minimal size of the computational domain that is required so that the outlet is “sufficiently far 
away”). With z the distance from the orifice, d the diameter of the orifice, ub the velocity of the 
jet at the orifice, c the concentration of a tracer such that c=cb=1 in the jet at the orifice and 
c=ca=0 the ambient concentration (for a constant CP=∂h/∂T|P, this concentration may represent 
a non-dimensional temperature T, that is c=(Ta-T)/(Ta-Tb), with Tb the temperature in the jet at 
the orifice and Ta the ambient temperature), the maximal velocity um and the maximal 
concentration cm on the centreline of the jet read: 
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um = 6.2ub d/z  

cm = 5.6 d/z 

• Plane mixing layer: for an incompressible flow, the width ecm of a mixing layer between two 
velocities u1 > u2 is proportional to the distance x (Viollet 1997 citing Papamoshkou and 
Roshko 1988): 

ecm = 0.17 x (u1-u2)/(½(u1+u2))  

• Backward facing step: for the flow behind a backward facing step with a Reynolds number 
based on the step height of 5100, the DNS of Le and Moin indicates that the reattachment 
point is located close to 6 times the height of the step 
(http://cfd.mace.manchester.ac.uk/ercoftac/). 

• Vortex shedding behind a cylinder with a circular section1 of diameter L: for a L-based 
Reynolds number ranging from 200 to 10 000, (Roshko 1953) measured a Strouhal number 
associated with the vortex shedding of approximately 0.21+/-0.01. For Reynolds numbers 
larger than 10 000, the Strouhal number increases slightly: (Roshko 1961) presented 
measurements of approximately 0.27 for a Reynolds number close to 5 106. 
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1 For an infinite prismatic obstacle with a square section, the measured values are close to those observed for an 
infinite cylinder with a circular section. Hence, for Reynolds numbers ranging from 100 to 10 000, the Strouhal 
number associated with the lift is approximately 0.13 (Okajima 1982) and the Strouhal number associated with the 
drag – and hence with the vortex shedding – is close to 0.21, which is the value observed for an infinite cylinder 
with a circular section (the fact that the drag frequency is approximately twice as large as the lift frequency comes 
from the fact that for one period associated with the lift, two vortices must have detached from the obstacle: one 
from the upper part and one from the lower part; the drag, on the other hand, goes over one cycle each time a 
vortex is shed). 


