

What's up in Code_Saturne V5.0(unreleased)

Code_Saturne development team ¹

¹Fluid Mechanics, Energy and Environment,

2017/04/21

Overview

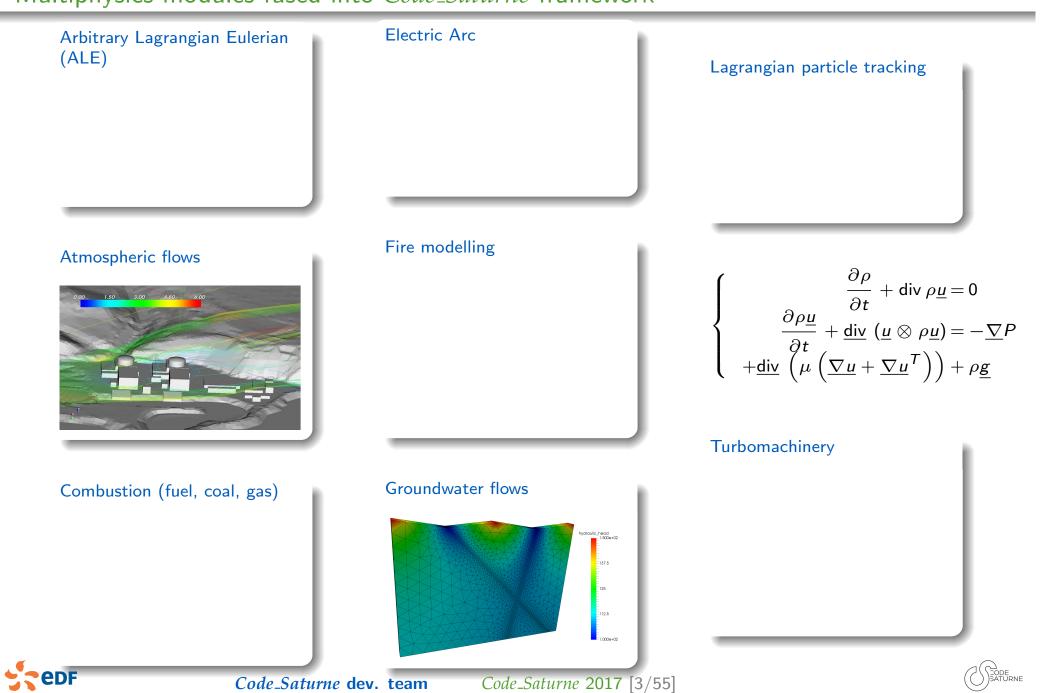
1

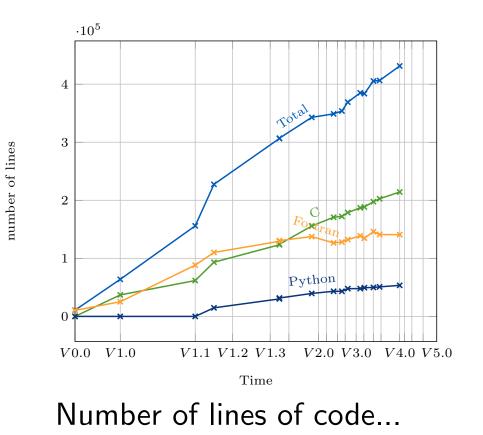
User functionalities: Graphical User Interface – SALOME _CFD

- Compressible module
- Volume of Fluid module
- Cooling Tower module
- Lagrangian module
- Turbulence modelling
- Atmospheric module
- Internal coupling
- Others

Numerics and linear solvers

- Compatible Discrete Operator (CDO) schemes
- Iterative solvers
- Others

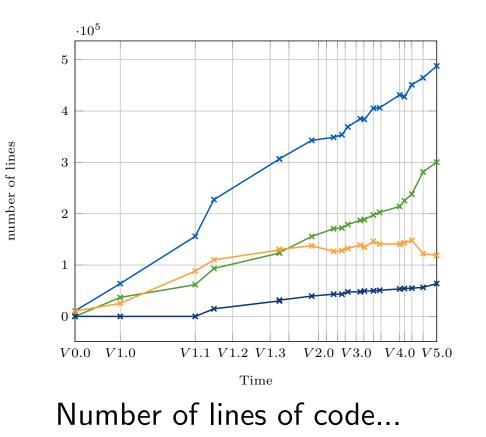

3


Development of *Code_Saturne* **at EDF** Multiphysics modules fused into *Code_Saturne* framework

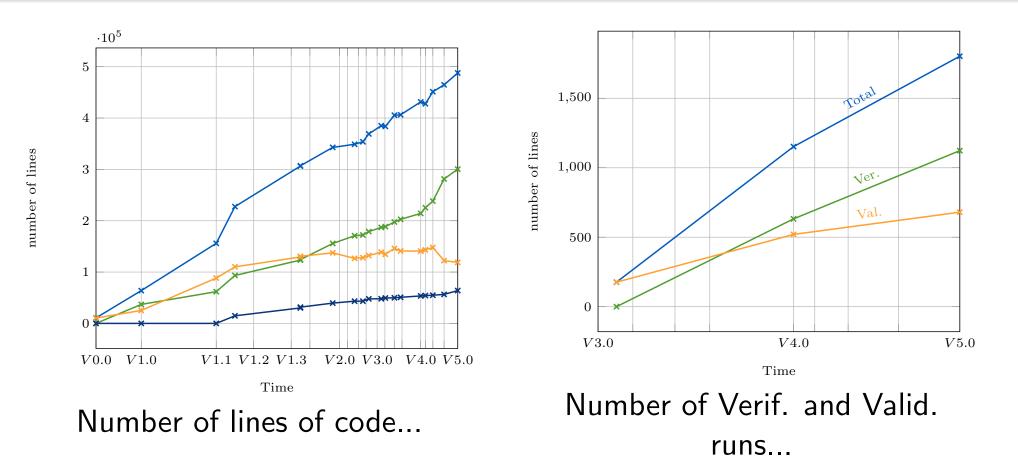
Arbitrary Lagrangian Eulerian (ALE)	Electric A	Nrc	Lagrangian particle tracking
Atmospheric flows	Fire mode	elling	Thermohydraulics for Nuclear applications
	_		Turbomachinery
Combustion (fuel, coal, gas)	Groundwa	ater flows	
		Fydould_head	
eDF Code_Saturne	dev. team	Code_Saturne 2017 [3	3/55]

Development of *Code_Saturne* at EDF Multiphysics modules fused into *Code_Saturne* framework

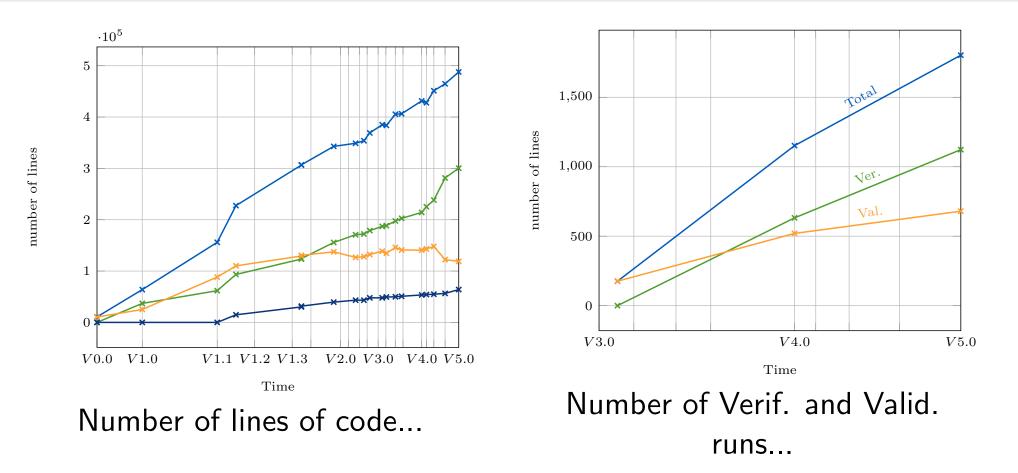
What's up since version 4.0?


Code_Saturne V5.0.0 released at the end of May in the **SALOME_CFD** platform in September

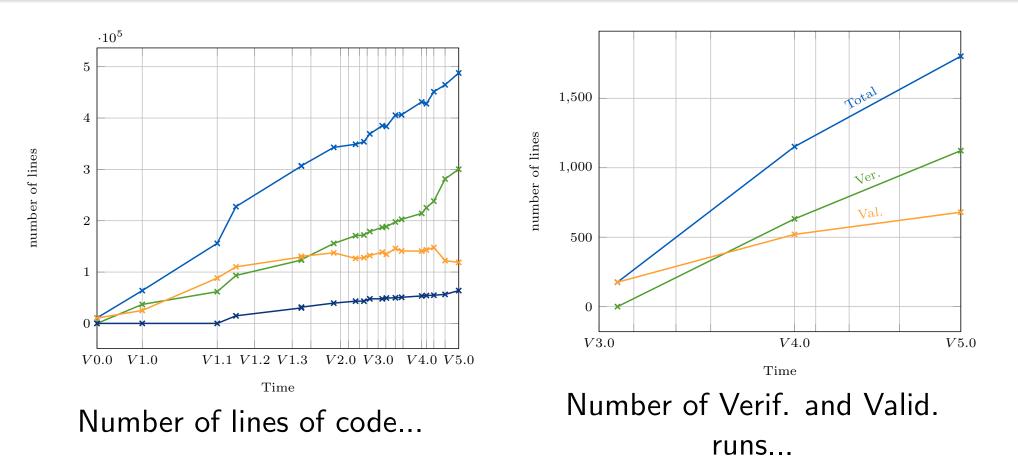
Code_Saturne 2017 [4/55]


What's up since version 4.0?

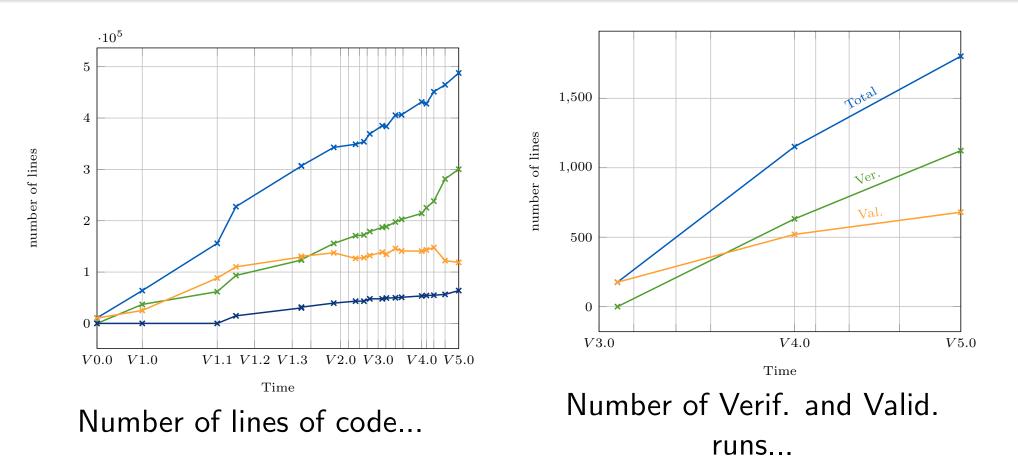
What's up since version 4.0?


Code_Saturne V5.0.0 released at the end of May in the SALOME_CFD platform in September

Code_Saturne 2017 [4/55]



What's up since version 4.0?



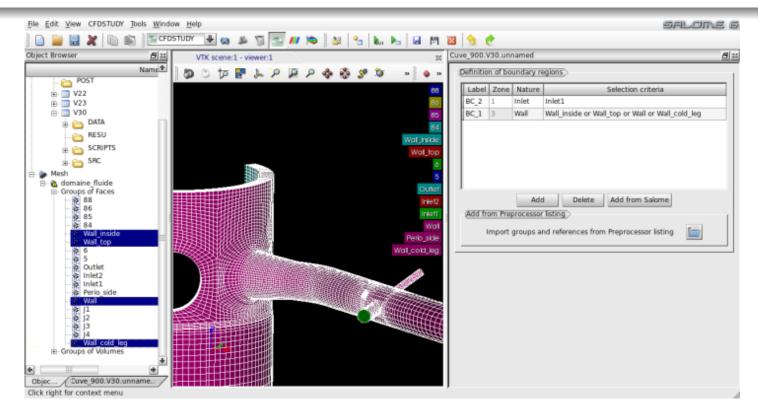
What's up since version 4.0?

What's up since version 4.0?

Overview

Salome_CFD distribution

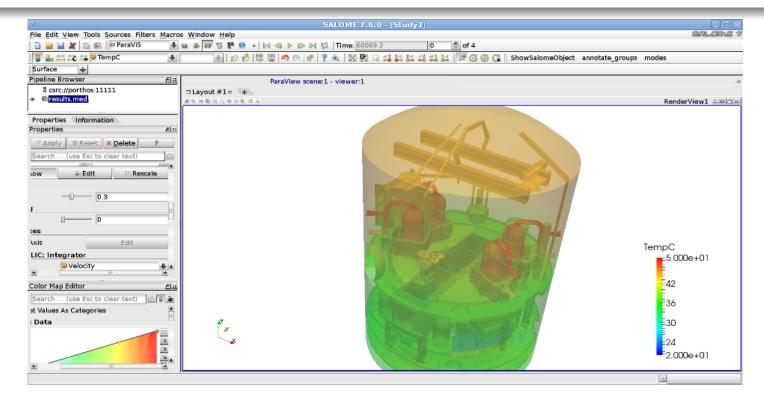
Context


- Increasing links and dependencies between Code_Saturne and other tools
- CFDStudy module for the Salome platform extends *Code_Saturne* GUI
 - visual selection of boundary zones for setting BCs.
 - visual verification of probes placement
 - GUI for handling of user functions
- Code_Saturne interoperability with other tools often based on tools from the Salome platform
 - OpenTURNS
 - code_aster coupling
 - ADAO, ...
- Setting up, building, or deploying environment with all the prerequisites increasingly complex

Salome_CFD workbench

Improved integration between components

- connection with SMESH for BC selections and probes placement
- graphical study creation and browsing
 - recently added support for studies with SYRTHES coupling



Salome_CFD workbench

Improved integration between components

- connection with SMESH for BC selections and probes placement
- graphical study creation and browsing
 - recently added support for studies with SYRTHES coupling

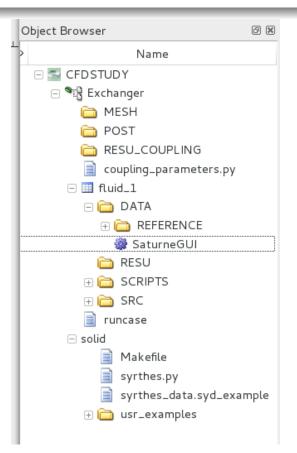
Salome_CFD workbench

Improved integration between components

- connection with SMESH for BC selections and probes placement
- graphical study creation and browsing

recently added support for studies with SYRTHES coupling

	CFD study localization or creation						
Load existing study							
✓ Create <u>S</u> tudy							
Study location	dation_SeparatedEffects/28_COUPL_SYRTHES						
Study <u>n</u> ame	Exchanger						
Cases							
fluid_1							
O NEPTUNE.	.CFD						
Ode_Satu	ırne						
copy from	copy from existing case						
🗹 Coupling w	rith Syrthes						
S <u>y</u> rthes Case	solid						
n <u>p</u> rocs	1						
	<mark>●</mark> <u>C</u> ancel						



Salome_CFD workbench

Improved integration between components

- connection with SMESH for BC selections and probes placement
- graphical study creation and browsing

recently added support for studies with SYRTHES coupling

Salome_CFD tools and modules

General Salome modules

- GEOM
- SMESH
- PARAVIS (visualization cluster connection preconfigured)
- Homard
- **.**..
- Code_Saturne
 - **b**oth production and debug (with additional checks and instrumentation) builds included
 - ParaView-based Catalyst in-situ visualization included
- NEPTUNE_CFD (optional, restricted distribution)
- SYRTHES
- OpenTURNS
- ADAO

Salome_CFD distribution

Status

- First EDF internal release of Salome_CFD October 2015
- managed in collaboration with Salome team and maintenance since 2016
- automated builds of multiple distributions
 - EDF Linux workstation (Calibre 9/Scibian 8)
 - EDF Linux workstation with NEPTUNE_CFD (Calibre 9/Scibian 8)
 - "universal" Linux workstation
- currently in testing
- release date for Salome-8/Code_Saturne 5.0-based version: September 2017
- "universal" version's technology may evolve in the future (Docker ?)
- Windows builds may become available in the future

Simplify data setting New GUI for studymanager tool (previously autovnv)

 Add a GUI for StudyManaGeR launcher: code_saturne studymanagergui (V5.0)

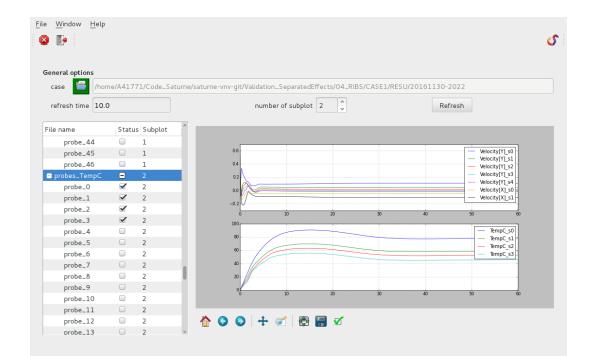
	autovnv_supernimbus	.xml - Code_Saturne AUTOVNV GUI - 5.0-alpha 🛛 🗙
<u>F</u> ile <u>W</u> indow <u>H</u> elp		S
	Directories	
Paths Manage cases	repository	/home/H81256/Code_Saturne/autovnv-git/Validation_SeparatedEffects
Define plotter	destination	_Saturne/autovnv-git/Validation_SeparatedEffects/RUN/16_test_autovnvgui
<		
Select the case directory		

Simplify data setting New GUI for studymanager tool (previously autovnv)

 Add a GUI for StudyManaGeR launcher: code_saturne studymanagergui (V5.0)

autovnv_supernimbus.xml – Code_Saturne AUTOVNV GUI – 5.0-alpha							×
<u>F</u> ile <u>W</u> indow <u>H</u> elp							S
 ☑ 9 ☑ Paths ☑ Manage cases 		ne studies and cases					
Define plotter		Case name	Status	Compute	Post- processing	run_id	Î
		□ 16_SUPERNIMBUS					
		CASE1			\checkmark		
		CASE2	\checkmark				
		CASE6			S		
		CASE3					
		CASE4					<u> </u>
		Add study	Delete study	Add case	Delete case	Duplicate	
< 3							

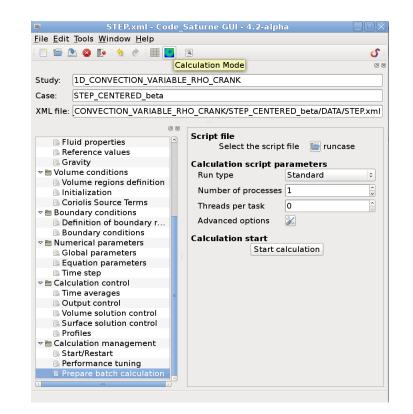
Simplify data setting New GUI for studymanager tool (previously autovnv)


 Add a GUI for StudyManaGeR launcher: code_saturne studymanagergui (V5.0)

e <u>W</u> indow <u>H</u> elp										
] 🗁 🖄 🔕 📭										Ś
0 %										
📔 Paths	Define st	udy								
📔 Manage cases	select	ed study	16_SU	IPERNIMB	US 🗸					
🞬 Define plotter		<u>۱</u> ــــــ								
	subplot	figure	measur	ement c	ases					
	id		title	xlabel	ylabel	legend status	jend positi	x axis range	y axis range	Î
	0			time (s)	Temper		1.3 1			
	1			time (s)	Velocity X (m/s)		1.3 1			
	2			time (s)	Velocity Y (m/s)		1.3 1			
	3			time (s)	Velocity Z		1.3 1			5
					Add	Delete				

Simplify convergence analysis New GUI to visualize data at probes and time residuals

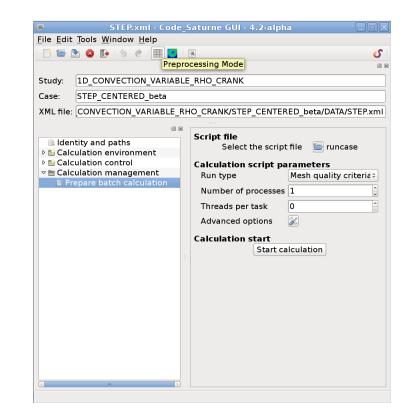
 Add tracking convergence tool: code_saturne trackcvg (V5.0)



Code_Saturne 2017 [11/55]

New preprocessor view

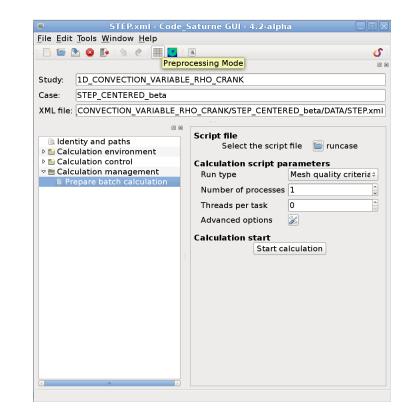
- "check mesh" option is replaced by a new "preprocessor view" in the GUI: when building a new case, the GUI only shows sections relative to mesh selection and preprocessing, showing only the steps necessary up to preprocessing (V4.2)
- "Tools" menu entries and toolbar icons allow switching from the preprocessing mode to the computation mode.
- the "preprocessing" run type handles batch runs and user subroutines, which the "check mesh" option did not.



Code_Saturne 2017 [12/55]

New preprocessor view

- "check mesh" option is replaced by a new "preprocessor view" in the GUI: when building a new case, the GUI only shows sections relative to mesh selection and preprocessing, showing only the steps necessary up to preprocessing (V4.2)
- "Tools" menu entries and toolbar icons allow switching from the preprocessing mode to the computation mode.
- the "preprocessing" run type handles batch runs and user subroutines, which the "check mesh" option did not.



New preprocessor view

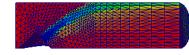
- "check mesh" option is replaced by a new "preprocessor view" in the GUI: when building a new case, the GUI only shows sections relative to mesh selection and preprocessing, showing only the steps necessary up to preprocessing (V4.2)
- "Tools" menu entries and toolbar icons allow switching from the preprocessing mode to the computation mode.
- the "preprocessing" run type handles batch runs and user subroutines, which the "check mesh" option did not.

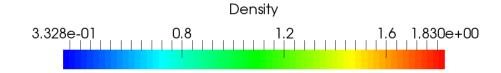
Pre-processing

Extrusion

- Add selected mesh boundary extrusion algorithm to extend a mesh (V4.3).
 - Available through simple and advanced user functions and through the GUI (for the simple variant).
 done by the solver, so works in parallel
 - in case of periodicity, rebuilding the periodicity in a later preprocessing stage may be necessary).

• x		
Identity and paths	Meshes Meshes options Periodic Boundaries	
Calculation environment Meshes selection Calculation control	Thin w	vall (optional)
+- Calculation management	zone id	selector
	Add	Delete
	Extrude r	nesh (optional)
	zone id 🗄 n layers 🗄 thickness 🗄 reason 🗄	selector
	0 4 0,3 1.5	outlet
	Add	Delete
	Subdivide warped faces	
	Mesh smoothing	




Pre-processing

Extrusion

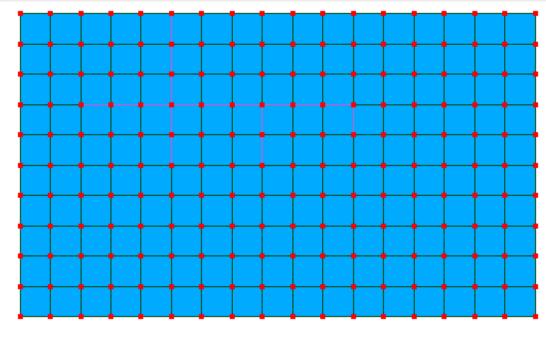
× × ×

- Add selected mesh boundary extrusion algorithm to extend a mesh (V4.3).
 - Available through simple and advanced user functions and through the GUI (for the simple variant).
 done by the solver, so works in parallel
 - in case of periodicity, rebuilding the periodicity in a later preprocessing stage may be necessary).

Pre-processing

Extrusion

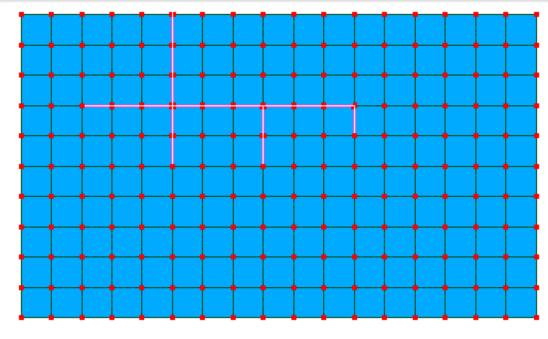
- Add selected mesh boundary extrusion algorithm to extend a mesh (V4.3).
 - Available through simple and advanced user functions and through the GUI (for the simple variant).
 done by the solver, so works in parallel
 - in case of periodicity, rebuilding the periodicity in a later preprocessing stage may be necessary).



Some details about pre-processing

Interior to boundary faces

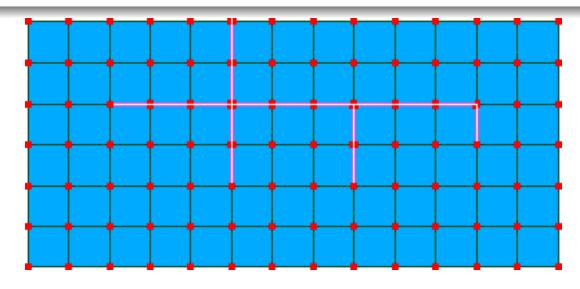
- Selected interior faces may be transformed into boundary faces.
 - Previously available in part through user functions as "thin walls"...
- Vertices, not just faces, are now duplicated.
 - handles selection boundaries (shared vertices) and intersections (leading to more than 2 vertices) correctly;
 - so faces are topologically different;
 - in case of deforming mesh, both sides must be handled;
 - compatible with vertex-based discretizations, such as CDO.


Code_Saturne 2017 [14/55]

Some details about pre-processing

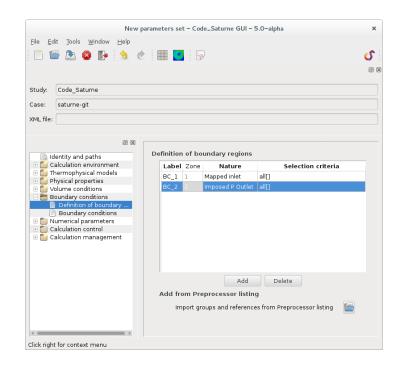
Interior to boundary faces

- Selected interior faces may be transformed into boundary faces.
 - Previously available in part through user functions as "thin walls"...
- Vertices, not just faces, are now duplicated.
 - handles selection boundaries (shared vertices) and intersections (leading to more than 2 vertices) correctly;
 - so faces are topologically different;
 - in case of deforming mesh, both sides must be handled;
 - compatible with vertex-based discretizations, such as CDO.

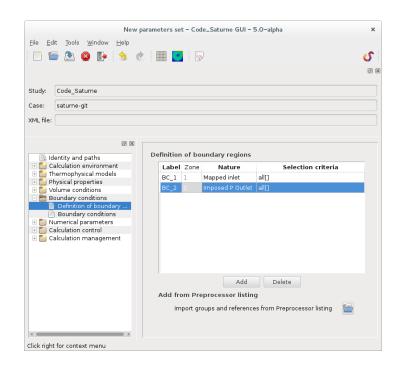

Code_Saturne 2017 [14/55]

Some details about pre-processing

Interior to boundary faces


- Selected interior faces may be transformed into boundary faces.
 - Previously available in part through user functions as "thin walls"...
- Vertices, not just faces, are now duplicated.
 - handles selection boundaries (shared vertices) and intersections (leading to more than 2 vertices) correctly;
 - so faces are topologically different;
 - in case of deforming mesh, both sides must be handled;
 - compatible with vertex-based discretizations, such as CDO.

New boundary conditions in the GUI


- Add "mapped inlet" boundary condition (for recycled inlets) (V5.0)
- Add "imposed pressure" outlet boundary condition (V5.0)

New boundary conditions in the GUI

- Add "mapped inlet" boundary condition (for recycled inlets) (V5.0)
- Add "imposed pressure" outlet boundary condition (V5.0)

Notebook for global variables in the GUI

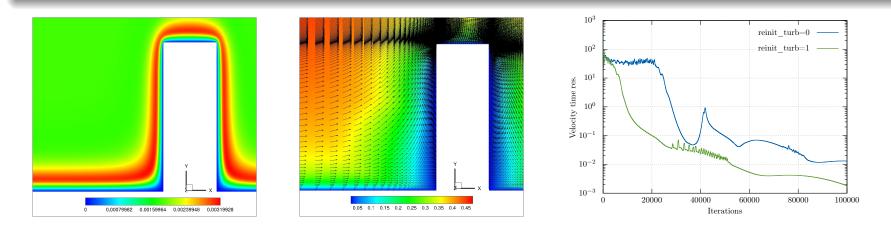
 Add a notebook to add global variables to be used in mathematical expressions (such as variables in the physical laws) (V5.0)

	SINUS.xml -	Code_Saturne (GUI - 5.0-alpha	
<u>F</u> ile <u>E</u> dit <u>T</u> ools <u>W</u> indow <u>H</u> elp	2 📰 💟 🖗			¢
Study: 1D_CONVECTION_CONSTANT Case: SINUS_2U_classic_beta	T_RHO_CRANK			
XML file: ONVECTION_CONSTANT_RHO	D_CRANK_rev9198m/1D_	CONVECTION_C	ONSTANT_RHO_CRANK/SINUS_2U_	classic_beta/DATA/SINUS.>
@ X	Notebook variabl		k	
 Identity and paths Calculation environment Meshes selection Notebook Thermophysical models Physical properties Volume conditions Boundary conditions Boundary conditions Calculation control Calculation management 	variable name my_variable	value 1.0		
		a	F import	
< >				

Notebook for global variables in the GUI

 Add a notebook to add global variables to be used in mathematical expressions (such as variables in the physical laws) (V5.0)

Mathematical expression editor	
User expression Predefined symbols Examples	
Required symbol:	^
density: Density	- 11
Predefined symbols:	
temp: Additional scalar	
<pre>rho0: Density (reference value) = 1.17862</pre>	
p0: Reference pressure = 101325.0	
<pre>my_variable: value (notebook) = 1.0</pre>	
Useful functions:	
cos: cosine	
sin: sine	
tan: tangent	
exp: exponential	
sgrt: square root	
log: napierian logarithm	
acos: arc cosine	
asin: arcsine	
atan: arc tangent	
atan2: arc tangent (two variables)	
cosh: hyperbolic cosine	
<pre>sinh: hyperbolic sine tanh: hyperbolic tangent</pre>	
abs: absolute value	
mod: modulo	U
<u>Annuler</u>	(<u>0</u> к



Simplify data setting, Initialisation ...

Automatic initialization of the Turbulence for EBRSM and $k - \omega$ models (V4.2)

From a reference velocity (uref), the turbulence profiles are reset after the first iteration. The velocity magnitude is also changed so that the Reichard profile is imposed next to walls. Activate it with reinit_turb=1 (in usipsu); Provided by R. Manceau (Uni. of Pau).

- Add handling of multiple compute builds through the GUI (V5.0)
- Add the verbosity mode for transported variables (V5.0)

Code_Saturne 2017 [17/55]

Simplify data setting, Initialisation ...

Automatic initialization of the Turbulence for EBRSM and $k - \omega$ models (V4.2)

From a reference velocity (uref), the turbulence profiles are reset after the first iteration. The velocity magnitude is also changed so that the Reichard profile is imposed next to walls. Activate it with reinit_turb=1 (in usipsu); Provided by R. Manceau (Uni. of Pau).

Volume or boundary settings

- Allow zone-based definitions for condensation model (recommended). The examples are updated as well, though single-zone setups remain compatible.
- Add a boundary condition code (icodcl=11), allowing to easily impose a boundary face value of the form detailed below (used for the wall pressure in the compressible module) (V4.1).

Add handling of multiple compute builds through the GUI (V5.0).
 Add the verbosity mode for transported variables (V5.0).

Code_Saturne 2017 [17/55]

Simplify data setting, Initialisation ...

Automatic initialization of the Turbulence for EBRSM and $k - \omega$ models (V4.2)

From a reference velocity (uref), the turbulence profiles are reset after the first iteration. The velocity magnitude is also changed so that the Reichard profile is imposed next to walls. Activate it with reinit_turb=1 (in usipsu); Provided by R. Manceau (Uni. of Pau).

Volume or boundary settings

- Allow zone-based definitions for condensation model (recommended). The examples are updated as well, though single-zone setups remain compatible.
- Add a boundary condition code (icodcl=11), allowing to easily impose a boundary face value of the form detailed below (used for the wall pressure in the compressible module) (V4.1).

$$P_{f_b} = \alpha P_{I'}^{n+1} + \beta$$
, (α, β) defined by the user

Add handling of multiple compute builds through the GUI (V5.0).
 Add the verbosity mode for transported variables (V5.0).

Code_Saturne 2017 [17/55]

Simplify data setting, Initialisation ...

Automatic initialization of the Turbulence for EBRSM and $k - \omega$ models (V4.2)

From a reference velocity (uref), the turbulence profiles are reset after the first iteration. The velocity magnitude is also changed so that the Reichard profile is imposed next to walls. Activate it with reinit_turb=1 (in usipsu); Provided by R. Manceau (Uni. of Pau).

Volume or boundary settings

- Allow zone-based definitions for condensation model (recommended). The examples are updated as well, though single-zone setups remain compatible.
- Add a boundary condition code (icodcl=11), allowing to easily impose a boundary face value of the form detailed below (used for the wall pressure in the compressible module) (V4.1).

- Add handling of multiple compute builds through the GUI (V5.0).
- Add the verbosity mode for transported variables (V5.0).

Code_Saturne 2017 [17/55]

Simplify data setting, Initialisation ...

Automatic initialization of the Turbulence for EBRSM and $k - \omega$ models (V4.2)

From a reference velocity (uref), the turbulence profiles are reset after the first iteration. The velocity magnitude is also changed so that the Reichard profile is imposed next to walls. Activate it with reinit_turb=1 (in usipsu); Provided by R. Manceau (Uni. of Pau).

Volume or boundary settings

- Allow zone-based definitions for condensation model (recommended). The examples are updated as well, though single-zone setups remain compatible.
- Add a boundary condition code (icodcl=11), allowing to easily impose a boundary face value of the form detailed below (used for the wall pressure in the compressible module) (V4.1).

- Add handling of multiple compute builds through the GUI (V5.0).
- Add the verbosity mode for transported variables (V5.0).

Simplify data setting, Initialisation ...

Automatic initialization of the Turbulence for EBRSM and $k - \omega$ models (V4.2)

From a reference velocity (uref), the turbulence profiles are reset after the first iteration. The velocity magnitude is also changed so that the Reichard profile is imposed next to walls. Activate it with reinit_turb=1 (in usipsu); Provided by R. Manceau (Uni. of Pau).

Volume or boundary settings

- Allow zone-based definitions for condensation model (recommended). The examples are updated as well, though single-zone setups remain compatible.
- Add a boundary condition code (icodcl=11), allowing to easily impose a boundary face value of the form detailed below (used for the wall pressure in the compressible module) (V4.1).

- Add handling of multiple compute builds through the GUI (V5.0).
- Add the verbosity mode for transported variables (V5.0).

Simplify data setting, Boundary Conditions ...

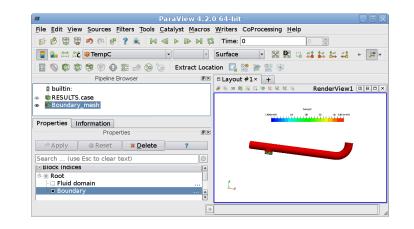
Volume settings

- Add simple fan effects modelling as explicit momentum source term in regions defined by fan characteristics (see cs_user_fans.f90) (V4.1).
- Add fans modelling in the V5.0.

Simplify data setting, Boundary Conditions ...

Volume settings

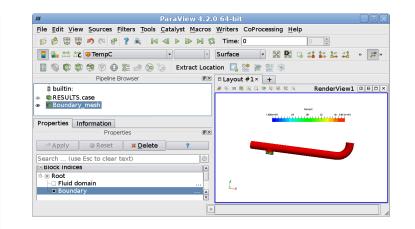
- Add simple fan effects modelling as explicit momentum source term in regions defined by fan characteristics (see cs_user_fans.f90) (V4.1).
- Add fans modelling in the V5.0.


<u>F</u> ile <u>E</u> dit <u>T</u> ools <u>W</u> indow <u>H</u> elp	diaphragme.xml – Code_S	acume Gor - 5.0-acpila		
	è 🔛 💟 🖗			
Study: CIH				
Case: RICS_2016_10				
XML file: /home/H81256/PROJET/PTHL	TITANIS2 TITANIS/CILI/DICS 2016 10/	ATA (dianbragma yml		
0 X				
Identity and paths	Fans definitions			
+ Calculation environment	Zone id Mesh dimension	Fan radius Hub radius	Axial torque	Blade radius
🗆 🛅 Thermophysical models	0 3	0,7 0,1	0.01 0.5	
Calculation features Deformable mesh		►		
Turbulence models				
Thermal model Species transport				
Turbomachinery				
Fans		Add Delet	te	
⊕ Physical properties ⊕ Volume conditions	Fan options			
🕀 🔯 Boundary conditions	Inlet axis	Outlet axis		curve coefficient
🕀 🔛 Numerical parameters	× 0.0	X 0.1	x	0.6
 	Y 0.0	Y 0.0	Y	-0.1
🕀 📔 Calculation control	Y 0.0 Z 0.0	Y 0.0 Z 0.0		-0.1

Simplify data setting, Post-processing

Boundary post-processing

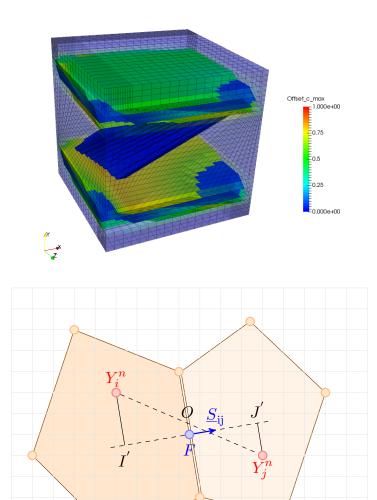
- Merge general boundary temperature handling with the radiative "wall temperature", for unified logging and post-processing (V4.2).
- Added optional saving of scalar variable boundary values as fields (also done for temperature when a property) (V4.2).



Simplify data setting, Post-processing

Boundary post-processing

- Merge general boundary temperature handling with the radiative "wall temperature", for unified logging and post-processing (V4.2).
- Added optional saving of scalar variable boundary values as fields (also done for temperature when a property) (V4.2).

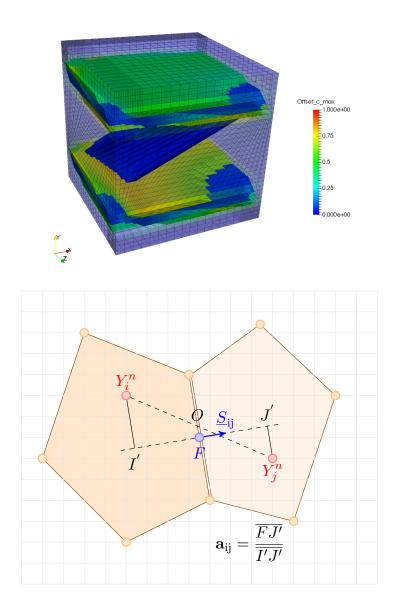


Simplify data setting, Post-processing

Volume post-processing

- Add boundary cell thickness computation to mesh quality criteria (V4.2).
- Renamed 'efforts' to 'stress', which should be less confusing (V4.1).
- Add higher level functions for turbulent boundary condition settings. This allows moving tests on the current turbulence model inside the user-callable functions, for more concise and safer programming (V4.1).
- Merge the bad cell and the mesh quality criterion for offsetting (V4.2).
- Add "iterative process error estimators" in the GUI in "Volume solution contol". pannel (V5.0).

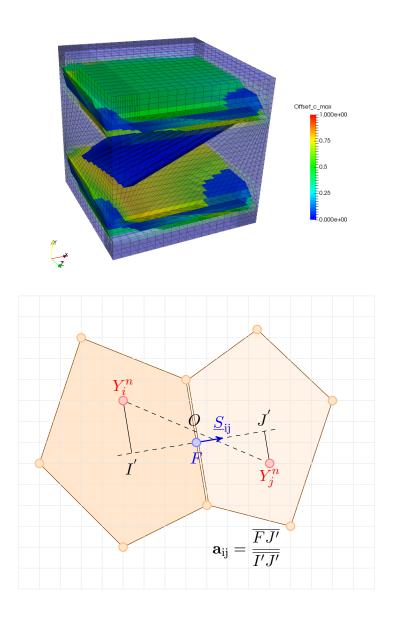
 $\mathbf{a}_{ij} = \frac{\overline{FJ'}}{\overline{I'J'}}$



Simplify data setting, Post-processing

Volume post-processing

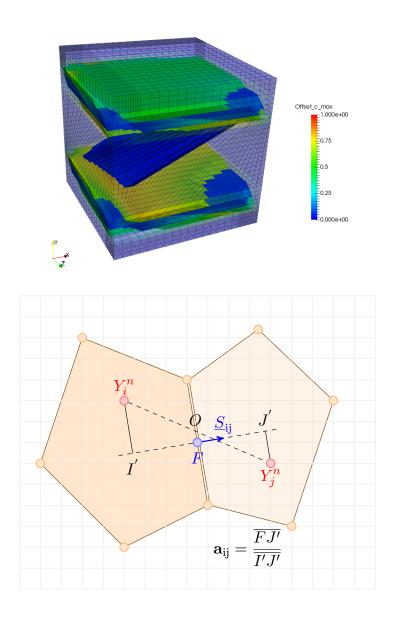
- Add boundary cell thickness computation to mesh quality criteria (V4.2).
- Renamed 'efforts' to 'stress', which should be less confusing (V4.1).
- Add higher level functions for turbulent boundary condition settings. This allows moving tests on the current turbulence model inside the user-callable functions, for more concise and safer programming (V4.1).
- Merge the bad cell and the mesh quality criterion for offsetting (V4.2).
- Add "iterative process error estimators" in the GUI in "Volume solution contol". pannel (V5.0).



Simplify data setting, Post-processing

Volume post-processing

- Add boundary cell thickness computation to mesh quality criteria (V4.2).
- Renamed 'efforts' to 'stress', which should be less confusing (V4.1).
- Add higher level functions for turbulent boundary condition settings. This allows moving tests on the current turbulence model inside the user-callable functions, for more concise and safer programming (V4.1).
- Merge the bad cell and the mesh quality criterion for offsetting (V4.2).
- Add "iterative process error estimators" in the GUI in "Volume solution contol". pannel (V5.0).



Simplify data setting, Post-processing

Volume post-processing

- Add boundary cell thickness computation to mesh quality criteria (V4.2).
- Renamed 'efforts' to 'stress', which should be less confusing (V4.1).
- Add higher level functions for turbulent boundary condition settings. This allows moving tests on the current turbulence model inside the user-callable functions, for more concise and safer programming (V4.1).
- Merge the bad cell and the mesh quality criterion for offsetting (V4.2).
- Add "iterative process error estimators" in the GUI in "Volume solution contol". pannel (V5.0).

Simplify data setting, Post-processing

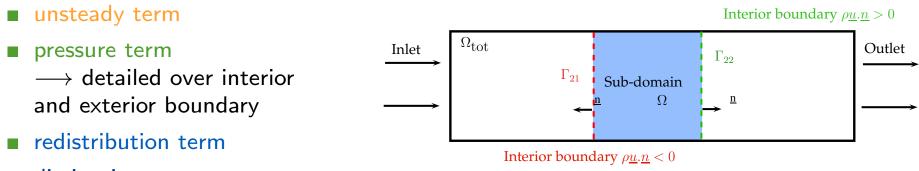
Volume post-processing

- Add boundary cell thickness computation to mesh quality criteria (V4.2).
- Renamed 'efforts' to 'stress', which should be less confusing (V4.1).
- Add higher level functions for turbulent boundary condition settings. This allows moving tests on the current turbulence model inside the user-callable functions, for more concise and safer programming (V4.1).
- Merge the bad cell and the mesh quality criterion for offsetting (V4.2).
- Add "iterative process error estimators" in the GUI in "Volume solution contol". pannel (V5.0).

Study:	Code Saturne						
Case:	saturne-git						
XML file:							
	c x						
le le	lentity and paths	Solut	ion control				
Calculation environment Derrophysical models		0	utput label	Intern	al name	Print in listing	Post- processing
	hysical properties		base			S	2
	olume conditions oundary conditions		Pressure pressure			S	a
	lumerical parameters		Velocity	veloci	,	√	
Calculation control			total_pressure total_pressure				2 I
	Time averages		turbulence			S	×
	Output control		k	k		S	S
Volume solution control Surface solution control			epsilon epsilon			\checkmark	≤
	Profiles	<	Turb\/iec	turhu	lant vierneitv	2	.
	Balance by zone						
	alculation management	Itera	tive process erro	or estir	mators		
		Pre	diction reconstruct	ion	off		~
		Ma	ss conservation				
		Co	Correction reconstruction off Navier-Stokes sub-iterations off				
		Na					
<	> >						

EsTot2

0.08 0.12 1.496e-0



ť,

Pressure drop balance by zone

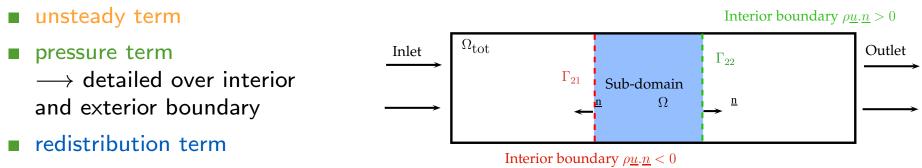
Head transport equation integrated over a sub-domain $\Omega \subset \Omega_{tot}$:

$$\int_{\Omega} \frac{\partial \rho u^2 / 2}{\partial t} d\Omega + \int_{\Omega} \operatorname{div} \left(\left[p + \rho \frac{u^2}{2} - \rho \underline{g} \cdot \underline{x} \right] \underline{u} \right) d\Omega = \int_{\Omega} \operatorname{div} \left(\underline{\tau}_{\underline{v} \text{iscous}} \cdot \underline{u} \right) d\Omega - \int_{\Omega} \underline{\tau}_{\underline{v} \text{iscous}} : \underline{\underline{S}} d\Omega$$

dissipation term.

How to perform a head loss balance?

Feature available in GUI or user subroutine (examples provided, see Doxygen). The detailed balance information will appear in the listing file.


Code_Saturne 2017 [21/55]

Pressure drop balance by zone

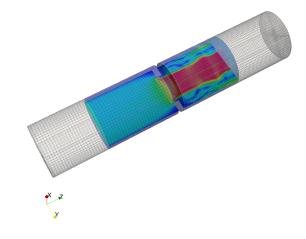
Head transport equation integrated over a sub-domain $\Omega \subset \Omega_{tot}$:

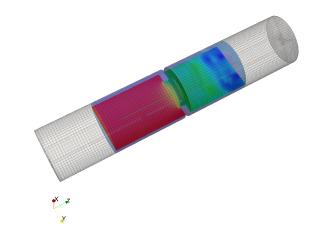
$$\int_{\Omega} \frac{\partial \rho u^2 / 2}{\partial t} d\Omega + \int_{\Omega} \operatorname{div} \left(\left[p + \rho \frac{u^2}{2} - \rho \underline{g} \cdot \underline{x} \right] \underline{u} \right) d\Omega = \int_{\Omega} \operatorname{div} \left(\underline{\tau}_{\underline{v} iscous} \cdot \underline{u} \right) d\Omega - \int_{\Omega} \underline{\tau}_{\underline{v} iscous} : \underline{\underline{S}} d\Omega$$

dissipation term.

How to perform a head loss balance?

Feature available in GUI or user subroutine (examples provided, see Doxygen).

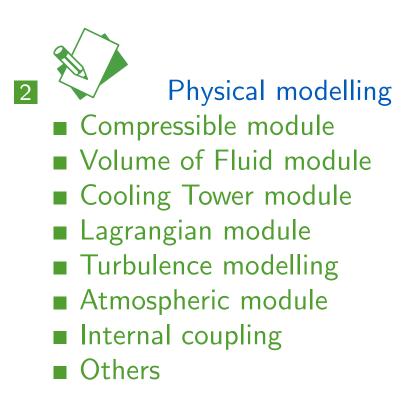

The detailed balance information will appear in the listing file.


Head loss balance for a flow through an orifice plate

Balance on "z > 0.05 and z < 0.175".

	dianhragma yml – Codo	Saturne GUI – 5.0-alpha	×
eta esta zula utadano utala	diaphragme.xmt = Code.	.sacurne Gor 4 5.0-aipna	^
<u>F</u> ile <u>E</u> dit <u>T</u> ools <u>W</u> indow <u>H</u> elp			ۍ ۵
Study: CIH			
Case: RICS_2016_10			
XML file: /home/H81256/PROJET/PTHL_T	TANS2_TITANS/CIH/RICS_2016_10)/DATA/diaphragme.xml	
ළ 🛛	Pressure drop definition		
 Calculation environment Thermophysical models Physical properties Volume conditions Boundary conditions Mumerical parameters 	Zone id	Selection criteria	
Calculation control Time averages Output control Volume solution control	Scalar balance	Add Delete	
 Surface solution control Profiles Balance by zone Calculation management 	Zone id variables	Selection criteria	
< 2		Add Delete	

Velocity field on selected zone.



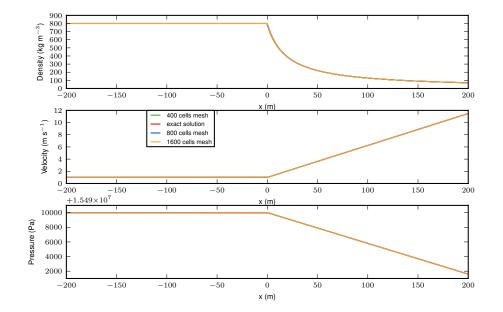
Pressure field on selected zone.

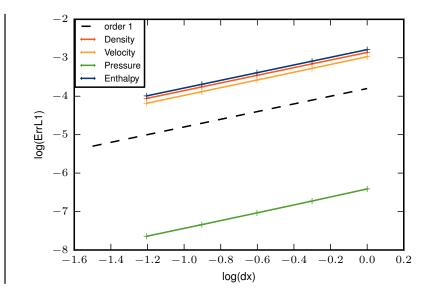
Overview

News in the compressible module

- Mass source terms are now usable. They are now correctly taken into account by the pressure step of the algorithm (V4.2).
- Add thermodynamic law for a perfect gas mix (V4.2):
 - gas mix (igmix, available in V4.0) and compressible (icompf) specific physics are used together
 - add property field for deduced mass fraction (iddgas) and mixture molar mass (igmxml)
 - add Sutherland behavior law for viscosity and thermal conductivity of gas mix (ivsuth option)
 - add one gas mix composed of helium, N_2 and O_2 (i.e. Helium+Air), O_2 is the deduced species.
- Add stiffened gas thermodynamic law (ieos=2) (V4.1). Set the new parameters gammasg ("pseudo" specific heat ratio) and psginf (infinite pressure) in uscfx2.

News in the compressible module


- Mass source terms are now usable. They are now correctly taken into account by the pressure step of the algorithm (V4.2).
- Add thermodynamic law for a perfect gas mix (V4.2):
 - gas mix (igmix, available in V4.0) and compressible (icompf) specific physics are used together
 - add property field for deduced mass fraction (iddgas) and mixture molar mass (igmxml)
 - add Sutherland behavior law for viscosity and thermal conductivity of gas mix (ivsuth option)
 - add one gas mix composed of helium, N_2 and O_2 (i.e. Helium+Air), O_2 is the deduced species.
- Add stiffened gas thermodynamic law (ieos=2) (V4.1). Set the new parameters gammasg ("pseudo" specific heat ratio) and psginf (infinite pressure) in uscfx2.



News in the compressible module

- Mass source terms are now usable. They are now correctly taken into account by the pressure step of the algorithm (V4.2).
- Add thermodynamic law for a perfect gas mix (V4.2):
 - gas mix (igmix, available in V4.0) and compressible (icompf) specific physics are used together
 - add property field for deduced mass fraction (iddgas) and mixture molar mass (igmxml)
 - add Sutherland behavior law for viscosity and thermal conductivity of gas mix (ivsuth option)
 - add one gas mix composed of helium, N_2 and O_2 (i.e. Helium+Air), O_2 is the deduced species.
- Add stiffened gas thermodynamic law (ieos=2) (V4.1). Set the new parameters gammasg ("pseudo" specific heat ratio) and psginf (infinite pressure) in uscfx2.

Comp. VoF CT Lag. Turb. Atmo IC Others

Volume of Fluid module

Model developed in collab. with RENUDA (V5.0) TALK

mixture dynamic - incompressible
 Navier-Stokes equations:

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \left(\rho \underline{u} \right) = 0$$

$$\frac{\partial}{\partial t}(\rho \underline{u}) + \underline{\operatorname{div}} \ (\underline{u} \otimes \rho \underline{u}) = -\underline{\nabla}P + \underline{\operatorname{div}} \underline{\tau}$$

• homogeneous mixture: $\rho = \alpha \rho_{\nu} + (1 - \alpha)\rho_{l}$ and $\mu = \alpha \mu_{\nu} + (1 - \alpha)\mu_{l}$

void fraction pure convection:

$$\frac{\partial \alpha}{\partial t} + \operatorname{div}\left(\alpha \underline{u}\right) = 0$$

with Compressive Interface Capturing

Scheme for Arbitrary Meshes (CICSAM)

New physical models

Refurbished the Cooling Tower module in collab. with RENUDA (upcoming in V5.0)

Use scalar with drift for the packing zones. TALK

News in the Lagrangian module

- Add precipitation/dissolution modelling for particle tracking (V4.2).
- Add the added-mass term in particle tracking (iadded_mass=1, V4.2).
- Changes in Lagrangian Particle tracking (V4.1).
 - update the multi-layer model
 - compute cell porosity from the mean deposition height at boundary faces
 - influence of deposited layers on the flow (iflow = 1 option) (with additional head losses);

Energy barrier used for deposition computed for smooth and rough walls.

News in the Lagrangian module

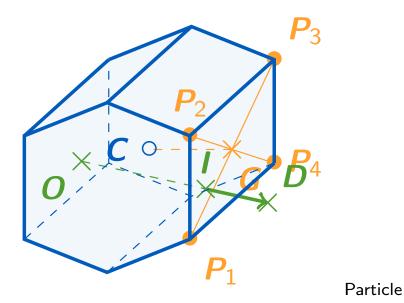
- Add precipitation/dissolution modelling for particle tracking (V4.2).
- Add the added-mass term in particle tracking (iadded_mass=1, V4.2).
- Changes in Lagrangian Particle tracking (V4.1).
 - update the multi-layer model
 - compute cell porosity from the mean deposition height at boundary faces
 - influence of deposited layers on the flow (iflow = 1 option) (with additional head losses);

Energy barrier used for deposition computed for smooth and rough walls.

News in the Lagrangian module

- Add precipitation/dissolution modelling for particle tracking (V4.2).
- Add the added-mass term in particle tracking (iadded_mass=1, V4.2).
- Changes in Lagrangian Particle tracking (V4.1).
 - update the multi-layer model
 - compute cell porosity from the mean deposition height at boundary faces
 - influence of deposited layers on the flow (iflow = 1 option) (with additional head losses);
 - Energy barrier used for deposition computed for smooth and rough walls.

News in the Lagrangian module


- Add deposition and resuspension models on internal faces. The user can the impose the motion of deposited particles. If integral approach for porous modelling is set up (iporos=3), then the internal fluid section is reduced by particle deposition (V4.3).
- New trajectory algorithm which does not loose particles even for warpped faces (V4.3).

News in the Lagrangian module

- Add deposition and resuspension models on internal faces. The user can the impose the motion of deposited particles. If integral approach for porous modelling is set up (iporos=3), then the internal fluid section is reduced by particle deposition (V4.3).
- New trajectory algorithm which does not loose particles even for warpped faces (V4.3).

displacement from O to D within a cell.

 P_5 P_4 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1

C 0

displacement from O to D going through a warped face.

News in the Lagrangian module

- injection is now pseudo-continuous when injecting at every time step. To revert to the previous behavior, the CS_LAGR_RESIDENCE_TIME value must be set to 0 for newly injected particles (V5.0).
- 2 new attributes, CS_LAGR_TR_TRUNCATE and CS_LAGR_TR_REPOSITION, may be used to visualize particles with trajectory errors, rather than remove them. Particles are now only removed when "completely lost", which should never happen (V5.0) (TALK).

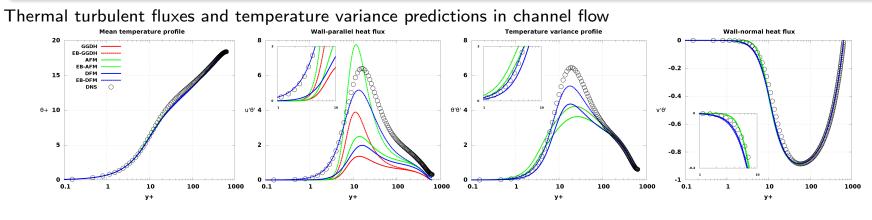
Turbulence modelling

- Add 2-scales wall function (with V. Driest mixing length) and its consistant wall function on scalars (keyword iwallf in the doc., V4.1).
- Add a wall function for the velocity based on scalable wall function which is valid for both rough and smooth walls (activate it with iwallf=6 in cs_user_parameters.f90). Moreover, the continuous wall function based on Van Driest (iwallf=5) is extended to Eddy Viscosity Models, and the use of roughness is allowed. For both wall functions, roughness must be specified in the field nammed boundary_roughness in cs_user_boundary_conditions.f90 for instance (V4.2).
- Modification of the LES dynamic Smagorinsky clippings (V5.0).
- Elliptic Blending Differential Flux Models for scalars (EBDFM, upcoming in V5.0). POSTER

Turbulence modelling

- Add 2-scales wall function (with V. Driest mixing length) and its consistant wall function on scalars (keyword iwallf in the doc., V4.1).
- Add a wall function for the velocity based on scalable wall function which is valid for both rough and smooth walls (activate it with iwallf=6 in cs_user_parameters.f90). Moreover, the continuous wall function based on Van Driest (iwallf=5) is extended to Eddy Viscosity Models, and the use of roughness is allowed. For both wall functions, roughness must be specified in the field nammed boundary_roughness in cs_user_boundary_conditions.f90 for instance (V4.2).
- Modification of the LES dynamic Smagorinsky clippings (V5.0).
- Elliptic Blending Differential Flux Models for scalars (EBDFM, upcoming in V5.0). POSTER

TODO Atmo video


Turbulence modelling

- Add 2-scales wall function (with V. Driest mixing length) and its consistant wall function on scalars (keyword iwallf in the doc., V4.1).
- Add a wall function for the velocity based on scalable wall function which is valid for both rough and smooth walls (activate it with iwallf=6 in cs_user_parameters.f90). Moreover, the continuous wall function based on Van Driest (iwallf=5) is extended to Eddy Viscosity Models, and the use of roughness is allowed. For both wall functions, roughness must be specified in the field nammed boundary_roughness in cs_user_boundary_conditions.f90 for instance (V4.2).
- Modification of the LES dynamic Smagorinsky clippings (V5.0).
- Elliptic Blending Differential Flux Models for scalars (EBDFM, upcoming in V5.0). POSTER

Turbulence modelling

- Add 2-scales wall function (with V. Driest mixing length) and its consistant wall function on scalars (keyword iwallf in the doc., V4.1).
- Add a wall function for the velocity based on scalable wall function which is valid for both rough and smooth walls (activate it with iwallf=6 in cs_user_parameters.f90). Moreover, the continuous wall function based on Van Driest (iwallf=5) is extended to Eddy Viscosity Models, and the use of roughness is allowed. For both wall functions, roughness must be specified in the field nammed boundary_roughness in cs_user_boundary_conditions.f90 for instance (V4.2).
- Modification of the LES dynamic Smagorinsky clippings (V5.0).
- Elliptic Blending Differential Flux Models for scalars (EBDFM, upcoming in V5.0). POSTER

Atmospheric module

- Improve robustness of rough boundary conditions for wall functions of scalars. Mainly impact Atmospheric flows.
- Add data assimilation feature to atmospheric module (optimal interpolation and nudging):
 - copy LU utilities to cs_math and keep static inline version of them in cs_sles_it
 - an optimal interpolation structure is created
 - interpol grid and measures set structures are used as well
 - multidimensional analysis are computed for multidimensional variables.

New physical models

Internal coupling between domains

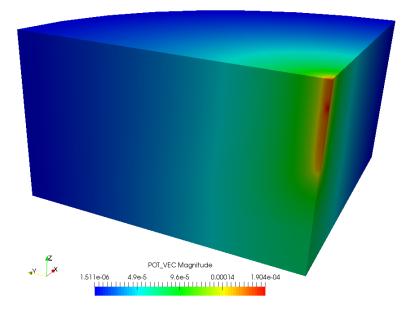
 Add internal coupling for scalars of two domains (for instance temperature between solid and liquid, or enthalpy for electric arcs between plasma and weldpool). See cs_user_parameters.c (V5.0) POSTER, TALKS

Comp. VoF CT Lag. Turb. Atmo IC Others

New physical models

Other

- Add ADF models for radiative transfers (V4.1).
- Add a convection-diffusion equation solver for additional vector variables (V5.0).
- Add sorption model treating non-equilibrium between solid and liquid phases to the ground water flow module (V5.0).



Comp. VoF CT Lag. Turb. Atmo IC Others

New physical models

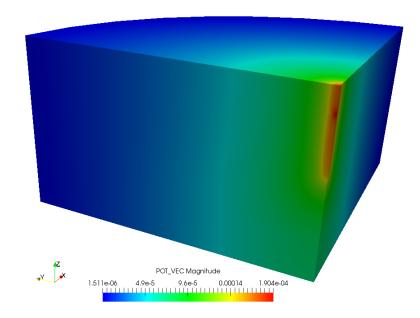
Other

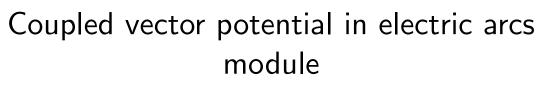
- Add ADF models for radiative transfers (V4.1).
- Add a convection-diffusion equation solver for additional vector variables (V5.0).
- Add sorption model treating non-equilibrium between solid and liquid phases to the ground water flow module (V5.0).

Coupled vector potential in electric arcs module

Code_Saturne dev. team

Code_Saturne 2017 [33/55]




Comp. VoF CT Lag. Turb. Atmo IC Others


New physical models

Other

- Add ADF models for radiative transfers (V4.1).
- Add a convection-diffusion equation solver for additional vector variables (V5.0).
- Add sorption model treating non-equilibrium between solid and liquid phases to the ground water flow module (V5.0).

Non-equilibrium models in GWF module

Code_Saturne dev. team

Code_Saturne 2017 [33/55]

Physical modules improvements

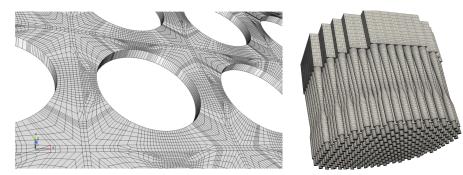
Turbomachinery

- To ensure correct restart behavior, the joined mesh is now also handled using checkpoint/restart.
- Added some turbomachinery post-processing utility functions (torque and manometric head). See
 cs_user_extra_operations.c Doxygen examples.
- Allow coupling of radiative transfer with 1d wall thermal module.
- Extend automatic postprocessing output to fields defined at vertices.
- Improve robustness of rough boundary conditions for wall functions of scalars. Mainly impact Atmospheric flows.

Overview

Numerics and linear solvers

- Compatible Discrete Operator (CDO) schemes
- Iterative solvers
- Others



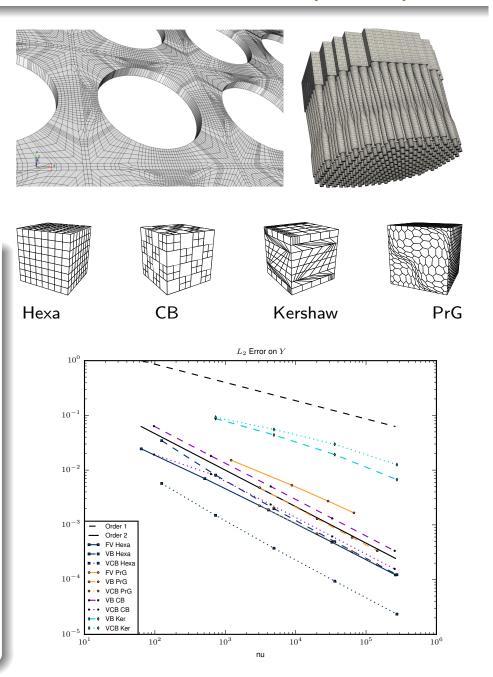
CDO schemes: Newly available in *Code_Saturne* (V4.2)

- Design to be robust on polyhedral/distorted meshes
- State-of-the-art discretization schemes mixing FE and FV ideas
- V&V process completed

New features

- Add new CDO schemes for scalar transport equations
 - Degrees of freedom at vertices (V4.2) and at cells/vertices (V5.0)
 - Several diffusion/convection schemes and boundary enforcement – Acknowledgment to P. Cantin (PhD)
- Improve the modularity/integration of CDO schemes (V5.0)
 - New probe/profile mechanism
 - Monitoring (log files, timer stats...)

CDO schemes: Newly available in *Code_Saturne* (V4.2)


- Design to be robust on polyhedral/distorted meshes
- State-of-the-art discretization schemes mixing FE and FV ideas
- V&V process completed

New features

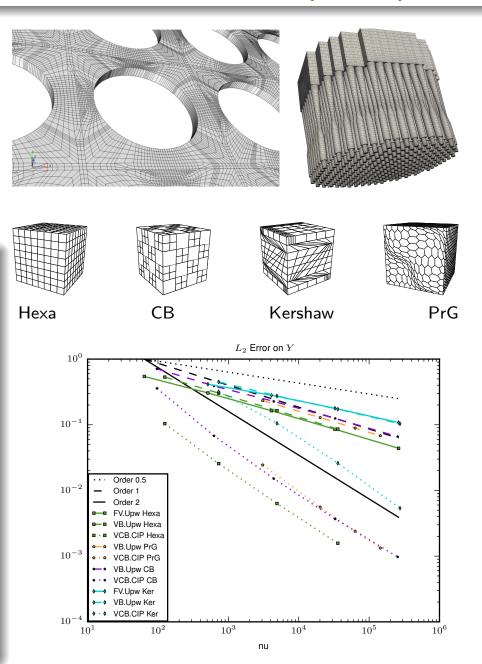
- Add new CDO schemes for scalar transport equations
 - Degrees of freedom at vertices (V4.2) and at cells/vertices (V5.0)
 - Several diffusion/convection schemes and boundary enforcement –

Acknowledgment to P. Cantin (PhD)

- Improve the modularity/integration of CDO schemes (V5.0)
 - New probe/profile mechanism
 - Monitoring (log files, timer stats...)

Code_Saturne 2017 [36/55]

CDO schemes: Newly available in *Code_Saturne* (V4.2)

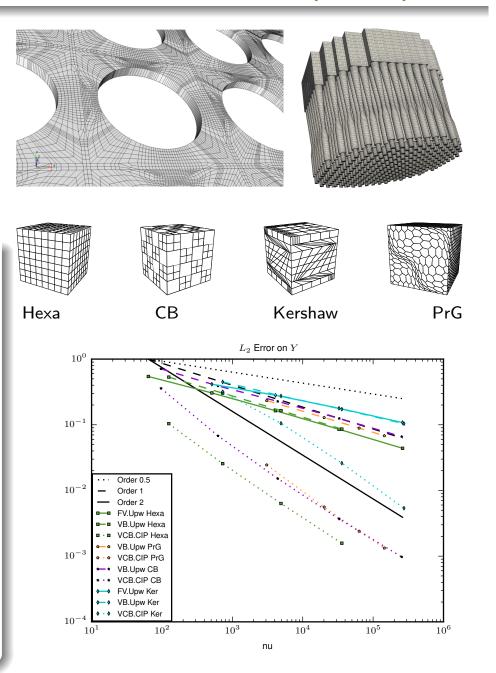

- Design to be robust on polyhedral/distorted meshes
- State-of-the-art discretization schemes mixing FE and FV ideas
- V&V process completed

New features

- Add new CDO schemes for scalar transport equations
 - Degrees of freedom at vertices (V4.2) and at cells/vertices (V5.0)
 - Several diffusion/convection schemes and boundary enforcement –

Acknowledgment to P. Cantin (PhD)

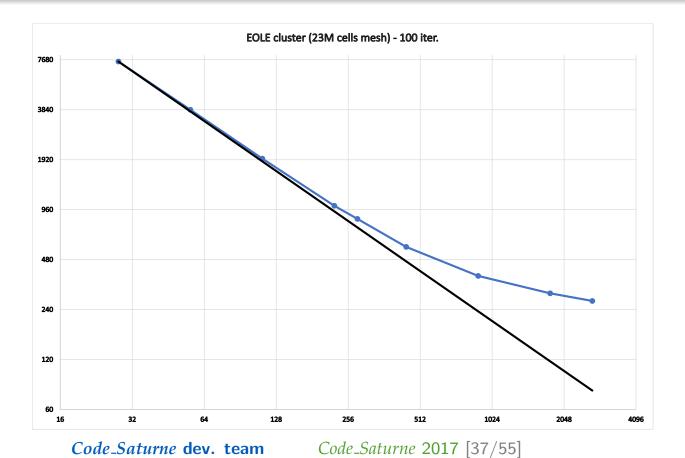
- Improve the modularity/integration of CDO schemes (V5.0)
 - New probe/profile mechanism
 - Monitoring (log files, timer stats...)



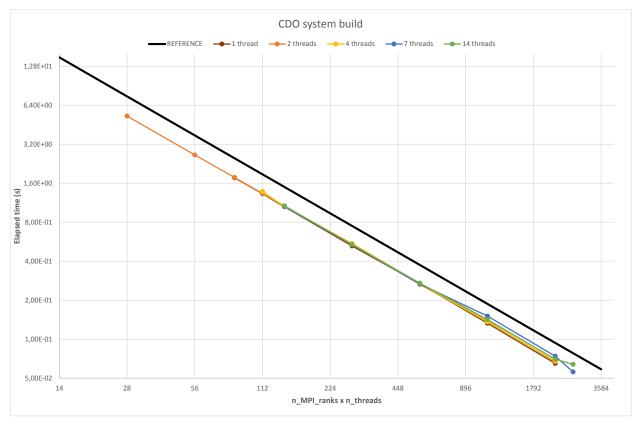
CDO schemes: Newly available in *Code_Saturne* (V4.2)

- Design to be robust on polyhedral/distorted meshes
- State-of-the-art discretization schemes mixing FE and FV ideas
- V&V process completed

New features

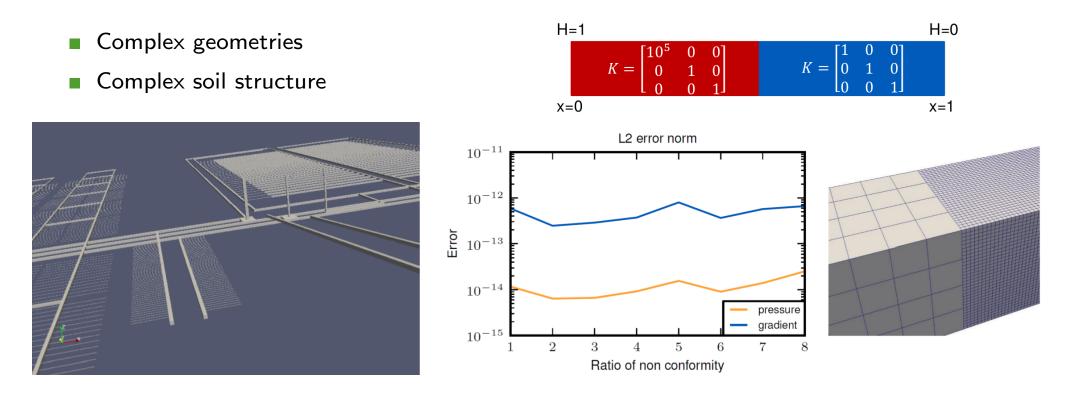

- Add new CDO schemes for scalar transport equations
 - Degrees of freedom at vertices (V4.2) and at cells/vertices (V5.0)
 - Several diffusion/convection schemes and boundary enforcement – Acknowledgment to P. Cantin (PhD)
 - Improve the modularity/integration of CDO schemes (V5.0)
 - New probe/profile mechanism
 - Monitoring (log files, timer stats...)

CDO schemes: Performance improvements


- **1** Two-level parallelism to take a better benefit of modern CPU architecture
 - Distributed memory based on MPI
 - Shared memory based on OpenMP
- 2 More efficient algorithms to build the linear system
 - Cellwise approach being more cache-friendly
 - New parallel assembler mechanism

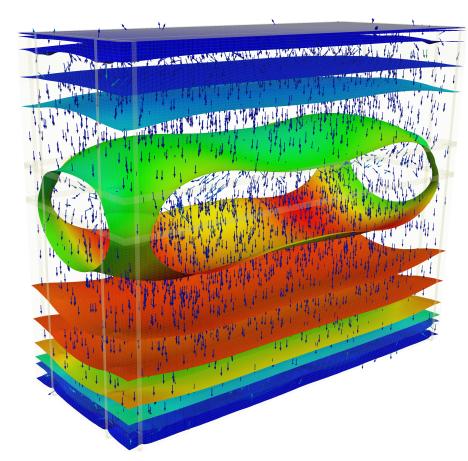
CDO schemes: Performance improvements

- Two-level parallelism to take a better benefit of modern CPU architecture 1
 - Distributed memory based on MPI
 - Shared memory based on **OpenMP**
- More efficient algorithms to build the linear system 2
 - Cellwise approach being more cache-friendly
 - New parallel assembler mechanism


Code_Saturne dev. team

CDO schemes: Groundwater flow module First industrial application

- Solve the Richards equation (time-dependent, highly heterogeneous and anisotropic diffusion equation)
- Induced a velocity field for scalar transport equations



CDO schemes: Groundwater flow module First industrial application

- Solve the Richards equation (time-dependent, highly heterogeneous and anisotropic diffusion equation)
- Induced a velocity field for scalar transport equations

- Study of the transport of radionuclides in a nuclear waste storage unit
- Simulation run with 23M mesh cells
- Test up to 83M

CDO Alg. Others

News for iterative solvers

New solver

- 3-layer conjugate residuals and parallel block Gauß-Seidel algorithms (V4.1).
- Added support for PETSc in linear solvers (V4.1).
- Add optional multigrid solver for scalars with convection and diffusion, based on the PhD work of Sana Khelifi (V5.0).

Better monitoring

Plot convergence of linear solvers in CSV files (V4.1).

Improve performance

Generalize preconditioning to enable multigrid as preconditioner (V4.2), now the default for all symmetric systems (V4.3); 2x to 4x speed improvement for this stage on average.

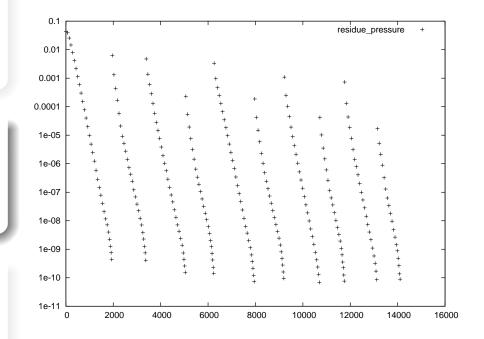
Eie gdt yols Window Help Image: Study: new_buget_april Case: reve2557:m Image: Solver reve257:m Image: Calculation environment Image: Solver Image: Choice Clipping Image: Solver Image: Clipping Image: Solver Image: Clipping Image: Solver Image: Clippin		New parameter	s set - Code_S	aturne GUI - 5.0	-alpha		
Study: new_buget_april Case: rev9257-m MML file: Solver Scheme Clipping Choice Precision Periodial properties Solver Choice Precision Verbosity Time Step Precision Precision Precision Verbosity Time Step Precision Precision Periodial properties Solver Scheme Clipping Solver Choice Precision Verbosity Time Step Precision Periodial properties Solver Choice Automatic Automatic 1e-08 0 Solver Verbosity Automatic Automatic 1e-08 0 Solver Solver Choice Precision Periodial Parameters Solver Solver Choice Precision Verbosity Time Step Pressure Automatic Automatic 1e-08 0 Solver Solver Choice Precision Parameters Solver Choice Automatic 1e-08 0 Choice Precision Parameters Automatic Automatic 1e-08 0 Constant Parameters Automatic 1e-08 0 Constant Parameters Constant Parameters Automatic 1e-08 0 Constant Parameters Constant Par							
Case: rev9257-m Case: rev925-rev925-rev925-rev925-rev925	📑 🖆 🖄 🚳 📭 🗠 🦿		2				
Case: rev9257-m Case: rev925-rev925-rev925-rev925-rev925							
Case: rev9257-m Case: rev925-rev925-rev925-rev925-rev925	Study: new huget anril						
Solver Solver Clipping Identity and paths Solver Solver Solver Freconditioning Solver Freconditioning Solver Freconditioning Freconditioning Solver Freconditioning Freconditioning Solver Solver Freconditioning Solver Solver Freconditioning Solver Solver Freconditioning Solver Solver Solver Solver Freconditioning Solver Solver Solver							
Identity and paths Solver Scheme Clipping Identity and paths Calculation environment Name Solver Preconditionint; Precision Verbosity Time Step Physical properties Physical properties Pressure Automatic 1e-08 0 Boundary conditions Velocity Automatic 1e-08 0 Boundary conditions Velocity Automatic 1e-08 0 Equation parameters k Automatic 1e-08 0 Equation parameters epsilon Automatic 1e-08 0 Calculation control Multigrid Automatic 1e-08 0							
Identity and paths Solver Scleme Clipping Solver Solver Preconditioning Solver Precision Verbosity Time Step Solver Physical properties Preconditioning Solver Precision Verbosity Time Step Solver Solver Choice Preconditioning Solver Verbosity Time Step Solver Solver Automatic Automatic 1e-08 O Image: Solver Solver Solver Automatic Automatic 1e-08 O Image: Solver Image: Solver Image: Solver Solver Solver Solver Solver Factor Factor <td>(ML file:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(ML file:						
Identity and paths Solver Scleme Clipping Solver Solver Preconditioning Solver Precision Verbosity Time Step Solver Physical properties Preconditioning Solver Precision Verbosity Time Step Solver Solver Choice Preconditioning Solver Verbosity Time Step Solver Solver Automatic Automatic 1e-08 O Image: Solver Solver Solver Automatic Automatic 1e-08 O Image: Solver Image: Solver Image: Solver Solver Solver Solver Solver Factor Factor <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Calculation environment Choice Solver Choice Precision Verbosity Factor Physical properties Solver Choice Choice Precision Verbosity Factor Precision Verbosity Choice Precision Verbosity Solver Precision Verbosity Solver Precision Verbosity Precision Precision Verbosity Precision Precision Verbosity Precision Precision Verbosity Precision Verbosity Ver	0 x						
Image: Solution properties Name Solver Choice Preconditioning Choice Over Dysical properties Verbosity Time Step Factor Image: Properties Precision Choice Precision Choice Precision Choice Precision Solver Precision Verbosity Time Step Factor Image: Properties Precision Automatic Automatic 1e-08 0 0 Image: Properties Automatic Automatic 1e-08 0 1		Solver Scheme	Clipping				
Image: Secondary conditions velocity Automatic Automatic 1e-08 0 Image: Secondary conditions k Automatic Automatic 1e-08 0 Image: Secondary conditions k Automatic Automatic 1e-08 0 Image: Secondary conditions Enuation parameters epsilon Automatic Automatic 1e-08 0 Image: Secondary condition control Image: Secondary condition control Automatic Image: Secondary condition control 0	🕀 🛅 Thermophysical models	Name				Verbosity	
Image: Solution control							
k Automatic Ie-08 0 Equation parameters epsilon Automatic Automatic 1e-08 0 Time step temperature Multigrid Automatic 1e-08 0 Calculation control Automatic Automatic 1e-08 0							
temperature Multigrid ▲ Automatic 1e-08 0 1	🕞 Global parameters					-	
Calculation control							
	Imme step	temperature	Multigrid	Automatic	1e-08	0	1
			<i>A</i>				
	Calculation management						

Code_Saturne 2017 [39/55]

CDO Alg. Others

News for iterative solvers

New solver


- 3-layer conjugate residuals and parallel block Gauß-Seidel algorithms (V4.1).
- Added support for PETSc in linear solvers (V4.1).
- Add optional multigrid solver for scalars with convection and diffusion, based on the PhD work of Sana Khelifi (V5.0).

Better monitoring

Plot convergence of linear solvers in CSV files (V4.1).

Improve performance

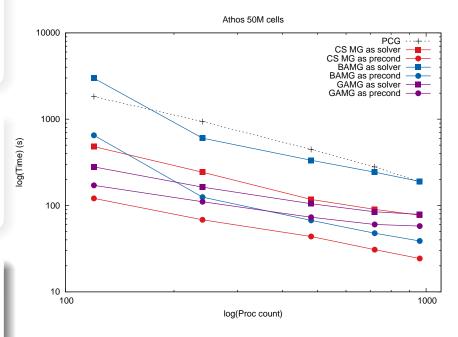
Generalize preconditioning to enable multigrid as preconditioner (V4.2), now the default for all symmetric systems (V4.3); 2x to 4x speed improvement for this stage on average.

Code_Saturne 2017 [39/55]

CDO Alg. Others

News for iterative solvers

New solver


- 3-layer conjugate residuals and parallel block Gauß-Seidel algorithms (V4.1).
- Added support for PETSc in linear solvers (V4.1).
- Add optional multigrid solver for scalars with convection and diffusion, based on the PhD work of Sana Khelifi (V5.0).

Better monitoring

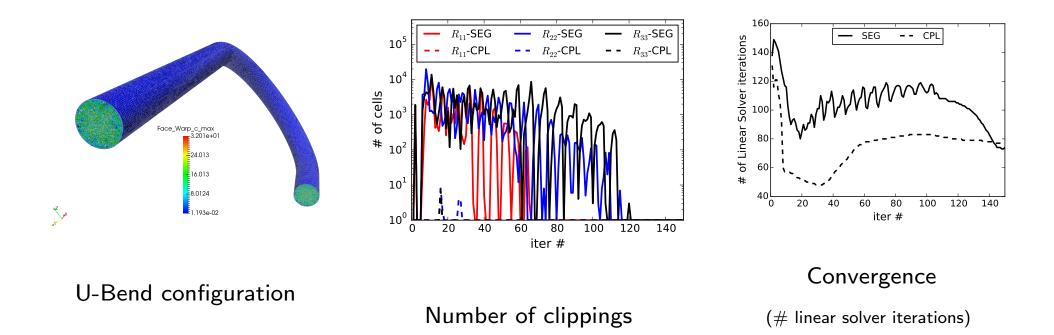
Plot convergence of linear solvers in CSV files (V4.1).

Improve performance

Generalize preconditioning to enable multigrid as preconditioner (V4.2), now the default for all symmetric systems (V4.3); 2x to 4x speed improvement for this stage on average.

New numerical features

- Improve the robustness of classical FV schemes in case of heterogeneous and anisotropic diffusion (V4.2, V5.0)
- Add a coupled solver for the components of symmetric tensors in Reynolds stress model (irijco=1, V4.2) and improve time stepping (V5.0). POSTER
- Add several flux limiters for convective schemes (V4.3 and V5.0):
 - Add an *ad hoc* limiter, which ensures that, for any convective schemes and any time step values, the variable remains between min_scalar and max_scalar (to be given by the user).
 - Add Roe-Sweby Limiters for all convective schemes

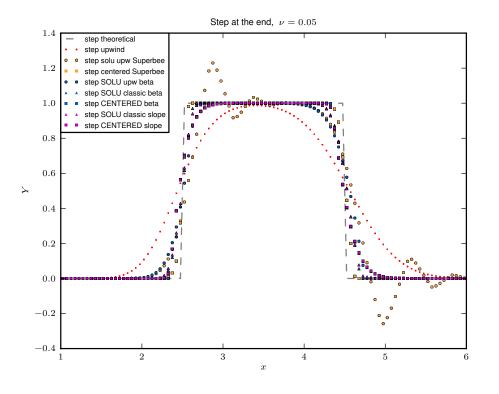


New numerical features

- Improve the robustness of classical FV schemes in case of heterogeneous and anisotropic diffusion (V4.2, V5.0)
- Add a coupled solver for the components of symmetric tensors in Reynolds stress model (irijco=1, V4.2) and improve time stepping (V5.0). POSTER
- Add several flux limiters for convective schemes (V4.3 and V5.0):

Add an *ad hoc* limiter, which ensures that, for any convective schemes and any time step values, the variable remains between min_scalar and max_scalar (to be given by the user).

Add Roe-Sweby Limiters for all convective schemes

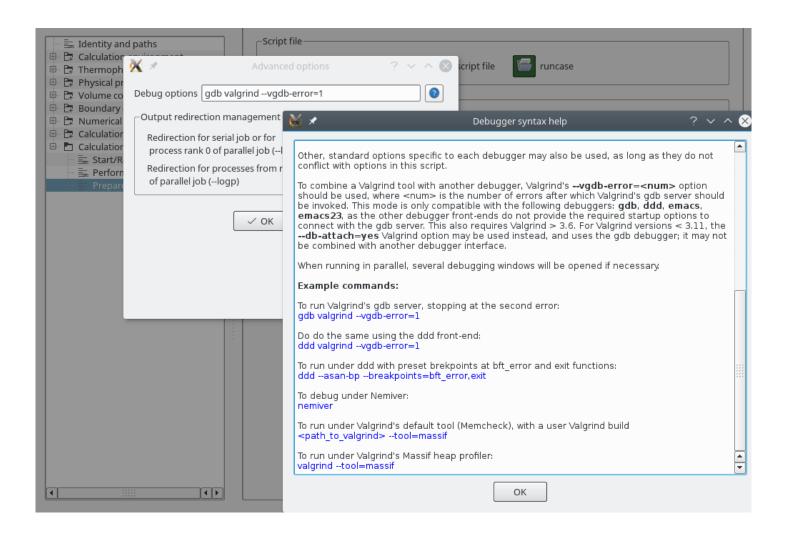


Code_Saturne 2017 [40/55]

New numerical features

- Improve the robustness of classical FV schemes in case of heterogeneous and anisotropic diffusion (V4.2, V5.0)
- Add a coupled solver for the components of symmetric tensors in Reynolds stress model (irijco=1, V4.2) and improve time stepping (V5.0). POSTER
- Add several flux limiters for convective schemes (V4.3 and V5.0):
 - Add an *ad hoc* limiter, which ensures that, for any convective schemes and any time step values, the variable remains between min_scalar and max_scalar (to be given by the user).
 - Add Roe-Sweby Limiters for all convective schemes

Overview



Add cs_debug_wrapper.py script to simplify running under a debugger (V4.2).

- usable with gdb and Valgrind, allowing additional user interfaces such as ddd, Emacs, KDevelop and Nemiver.
- launch several parallel instances and add breakpoints with a single command, even combined with Valgrind's gdb server.
- not an alternative to TotalView or DDT, but practical for most debugging tasks.
- usable both from the GUI and main user scripts, extending and replaces the previous Valgrind option)
- usable as a standalone script

Example of use of debugger wrapper

Architecture changes

Computing Environment

- Builds use OpenMP thread parallelism by default (V4.1)
 - best performance on <u>n</u> cores usually obtained with 2 OpenMP threads per rank and n/2 MPI ranks.

even when performance is similar, memory usage is reduced when exanging MPI processes for threads.

- Do not build with BLAS by default, as only MKL is used outside of unit tests, and using it requires providing its path to --with-blas anyways.
- Complete Python 3 compatibility (V4.1)
 - minimum Python version: 2.6 (may become 2.7 in the future)
 - builds with SALOME should use the same Python version as SALOME
- PyQt 5 compatible (V4.3)
 - for systems with both PyQt 4 and 5, defining QT_SELECT=4 or QT_SELECT=5 at the configure stage allows chosing between the two
- did we mention the optional PETSc support already?

Architecture changes

- Builds use OpenMP thread parallelism by default (V4.1)
 - best performance on <u>n</u> cores usually obtained with 2 OpenMP threads per rank and n/2 MPI ranks.
 - even when performance is similar, memory usage is reduced when exanging MPI processes for threads.
- Do not build with BLAS by default, as only MKL is used outside of unit tests, and using it requires providing its path to --with-blas anyways.
- Complete Python 3 compatibility (V4.1)
 - minimum Python version: 2.6 (may become 2.7 in the future)
 - builds with SALOME should use the same Python version as SALOME
- PyQt 5 compatible (V4.3)
 - for systems with both PyQt 4 and 5, defining QT_SELECT=4 or QT_SELECT=5 at the configure stage allows chosing between the two
- did we mention the optional PETSc support already?

Architecture changes

- Builds use OpenMP thread parallelism by default (V4.1)
 - best performance on <u>n</u> cores usually obtained with 2 OpenMP threads per rank and n/2 MPI ranks.
 - even when performance is similar, memory usage is reduced when exanging MPI processes for threads.
- Do not build with BLAS by default, as only MKL is used outside of unit tests, and using it requires providing its path to --with-blas anyways.
- Complete Python 3 compatibility (V4.1)
 - minimum Python version: 2.6 (may become 2.7 in the future)
 - builds with SALOME should use the same Python version as SALOME
- PyQt 5 compatible (V4.3)
 - for systems with both PyQt 4 and 5, defining QT_SELECT=4 or QT_SELECT=5 at the configure stage allows chosing between the two
- did we mention the optional PETSc support already?

Architecture changes

- Builds use OpenMP thread parallelism by default (V4.1)
 - best performance on <u>n</u> cores usually obtained with 2 OpenMP threads per rank and n/2 MPI ranks.
 - even when performance is similar, memory usage is reduced when exanging MPI processes for threads.
- Do not build with BLAS by default, as only MKL is used outside of unit tests, and using it requires providing its path to --with-blas anyways.
- Complete Python 3 compatibility (V4.1)
 - minimum Python version: 2.6 (may become 2.7 in the future)
 - builds with SALOME should use the same Python version as SALOME
- PyQt 5 compatible (V4.3)
 - for systems with both PyQt 4 and 5, defining QT_SELECT=4 or QT_SELECT=5 at the configure stage allows chosing between the two
- did we mention the optional PETSc support already?

Architecture changes

- Builds use OpenMP thread parallelism by default (V4.1)
 - best performance on <u>n</u> cores usually obtained with 2 OpenMP threads per rank and n/2 MPI ranks.
 - even when performance is similar, memory usage is reduced when exanging MPI processes for threads.
- Do not build with BLAS by default, as only MKL is used outside of unit tests, and using it requires providing its path to --with-blas anyways.
- Complete Python 3 compatibility (V4.1)
 - minimum Python version: 2.6 (may become 2.7 in the future)
 - builds with SALOME should use the same Python version as SALOME
- PyQt 5 compatible (V4.3)
 - for systems with both PyQt 4 and 5, defining QT_SELECT=4 or QT_SELECT=5 at the configure stage allows chosing between the two
- did we mention the optional PETSc support already?

Architecture changes

Parallel algorithms

- Implement handling of point and element tags so as to enable face or cell coupling within a single computation (V4.3).
- Refactor EnSight, MED and CGNS output, replacing serialized slice gathers by parallel block redistribution logic (V4.1).

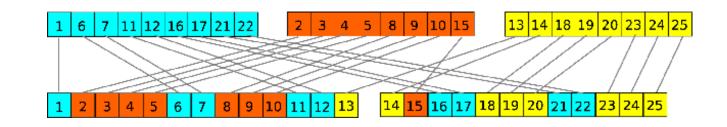
Added parallel MED output when MED and HDF5 libraries are built with parallel IO (V4.3).

- Major changes to all_to_all API, so as to make its usage easier (V4.3).
 - new API is similar to cs_part_to_block / cs_block_to_part, as this may align with sparse or neighborhod collectives in the future.
 - allows instrumentation (timing) and choice of algorithms.
 - only partially deployed at this stage, most refactoring work remains.

Architecture changes

Parallel algorithms

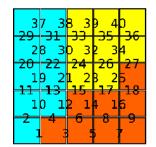
- Implement handling of point and element tags so as to enable face or cell coupling within a single computation (V4.3).
- Refactor EnSight, MED and CGNS output, replacing serialized slice gathers by parallel block redistribution logic (V4.1).
 - Added parallel MED output when MED and HDF5 libraries are built with parallel IO (V4.3).
- Major changes to all_to_all API, so as to make its usage easier (V4.3).
 - new API is similar to cs_part_to_block / cs_block_to_part, as this may align with sparse or neighborhod collectives in the future.
 - allows instrumentation (timing) and choice of algorithms.
 - only partially deployed at this stage, most refactoring work remains.

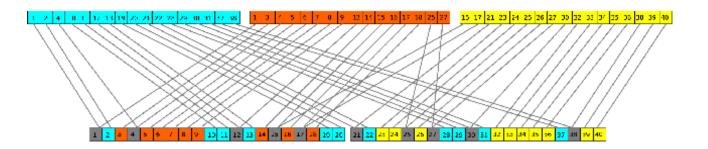

SODE

Architecture changes

Parallel algorithms

- Implement handling of point and element tags so as to enable face or cell coupling within a single computation (V4.3).
- Refactor EnSight, MED and CGNS output, replacing serialized slice gathers by parallel block redistribution logic (V4.1).
 - Added parallel MED output when MED and HDF5 libraries are built with parallel IO (V4.3).
- Major changes to all_to_all API, so as to make its usage easier (V4.3).
 - new API is similar to cs_part_to_block / cs_block_to_part, as this may align with sparse or neighborhod collectives in the future.
 - allows instrumentation (timing) and choice of algorithms.
 - only partially deployed at this stage, most refactoring work remains.

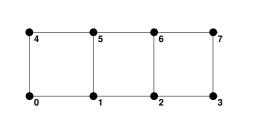


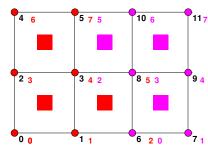


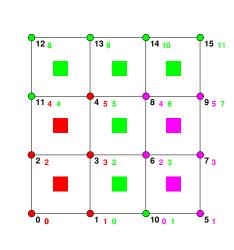
Architecture changes

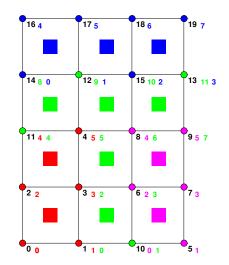
Parallel algorithms

- Implement handling of point and element tags so as to enable face or cell coupling within a single computation (V4.3).
- Refactor EnSight, MED and CGNS output, replacing serialized slice gathers by parallel block redistribution logic (V4.1).
 - Added parallel MED output when MED and HDF5 libraries are built with parallel IO (V4.3).
- Major changes to all_to_all API, so as to make its usage easier (V4.3).
 - new API is similar to cs_part_to_block / cs_block_to_part, as this may align with sparse or neighborhod collectives in the future.
 - allows instrumentation (timing) and choice of algorithms.
 - only partially deployed at this stage, most refactoring work remains.






Architecture changes


Parallel linear algebra

- Implement algebraic construction of sparse matrixes based on global row and column ids, using the cs_matrix_assembler_...(*) API (V5.0).
 - the associated cs_range_set_...(*) API allows handling of an owning rank for distributed entities with some shared elements, such as vertices on parallel boundaries.
 - this is the basis for parallelizing vertex or face-based CDO schemes, while maintaining a compatiility with optional external linear algebra libraries
 - in the future, this may also be used to allow various forms or internal or reinforced couplings

unit tests are included

Architecture changes

User interface improvements

- Add --import-only option to code_saturne create command so as to rebuild SaturneGUI and runcase scripts for a case which was copied from a different system (V4.1).
- Add --compute-build option to code_saturne run command to allow choosing one of several compute builds at runtime (V4.2).

choosing between builds (such as production and debug) using the GUI is now possible (V5.0).

- Add code_saturne submit command to submit a batch job. The GUI automatically uses this to prepare data upon submission.
 - run directory is created, data is copied, and user subroutines are compiled before the job is effectively enqueued.
 - if user subroutines don't build, the job is not enqueued (of course, this never happens, as you always check with code_saturne compile -t first, don't you?)
 - if you modify your setup before the job starts, the job still starts with the setup as it was at submission time.

Architecture changes

User interface improvements

- Add --import-only option to code_saturne create command so as to rebuild SaturneGUI and runcase scripts for a case which was copied from a different system (V4.1).
- Add --compute-build option to code_saturne run command to allow choosing one of several compute builds at runtime (V4.2).

choosing between builds (such as production and debug) using the GUI is now possible (V5.0).

- Add code_saturne submit command to submit a batch job. The GUI automatically uses this to prepare data upon submission.
 - run directory is created, data is copied, and user subroutines are compiled before the job is effectively enqueued.
 - if user subroutines don't build, the job is not enqueued (of course, this never happens, as you always check with code_saturne compile -t first, don't you?)
 - if you modify your setup before the job starts, the job still starts with the setup as it was at submission time.

Architecture changes

User interface improvements

- Add --import-only option to code_saturne create command so as to rebuild SaturneGUI and runcase scripts for a case which was copied from a different system (V4.1).
- Add --compute-build option to code_saturne run command to allow choosing one of several compute builds at runtime (V4.2).

choosing between builds (such as production and debug) using the GUI is now possible (V5.0).

- Add code_saturne submit command to submit a batch job. The GUI automatically uses this to prepare data upon submission.
 - run directory is created, data is copied, and user subroutines are compiled before the job is effectively enqueued.
 - if user subroutines don't build, the job is not enqueued (of course, this never happens, as you always check with code_saturne compile -t first, don't you?)
 - if you modify your setup before the job starts, the job still starts with the setup as it was at submission time.

Example of job submission

	3	X () 20160330-1929 <@porthos1>	$\odot \odot \odot \otimes$
× •	instant_(Number of lines Save as Stop now Stop at Kill	
<u>File Edit T</u> ools <u>W</u> indow <u>H</u> elp			
] 🗋 🗁 🙆 🚺 🚺 🖉 🗐 📰		Code_Saturne ******	
Study: Bench_Cuve		Version: 4.2 Path: /home/projets/saturne/Code_Saturne/4.2/arch/porthos/impi	
Case: V42		Result directory: /porthos-scratch/D43345/Bench_Cuve/V42/RESU/20160330-1929	
XML file: /porthos-scratch/D43345/Bench_Cuve/V42	2/DATA/instant_	·	
₽ × Radiative transfers	Job and scrip	Compiling user subroutines and linking	
Conjugate heat transfer Species transport Turbomachinery Physical properties	– SLURM job pa	**************************************	
Reference values Fluid properties Gravity Volume conditions		Submitted batch job 271464	
Volume regions definition		ок	
Coriolis Source Terms	C		
□		WCKey P110E:SATURNE	
Boundary conditions	-Calculation scr	ript parameters Run type Standard 💌	
Equation parameters			
Time step		Number of processes 1	
Calculation control		Threads per task 0	
Output control		Advanced options	
Surface solution control	Calculation sta	art	
Calculation management		Submit job	
Prepare batch calculation			

Architecture changes

C translation

- Removed all the remaining mappings between fields and propce array:
 - removed propee and ipproc arrays and nproce
 - removed iprpfl indirection array between field indices and properties numbers; iprpfl is kept for compatibility but is just an identity function (hence still known in user subroutines);
 - irom, iviscl, etc.. are now directly field indices (hence starting from 0)
 - test on variability of specific heat (icp), isochoric specific heat (icv) and volumetric viscosity (iviscv) are consequently shifted of 1 (-1 : uniform field, >= 0: non uniform)
 - mesh viscosity now a 3-dimensional field when strictly orthotropic
 - removed iroma, ivisla, ivista, icpa variables; previous values of these fields now accessed by

field_get_val_prev subroutine.

- Convert Lagrangian and radiative module implementations to C. This affects the associated user subroutines (V4.3).
- Add cs_user_initialization.c, cs_user_physical_properties.c (V4.3).
- Translation of cs_user_extra_op and cs_user_parameters to C in VnV base:
 - removed Fortran arrays corresponding to members of cs_var_cal_opt_t C structure
 - deployed use of get/set var_cal_opt everywhere
 - added cs_post_util functions (R_{ii} post-pro for EVM models on a subset of cells)
 - moved izfppp to C (cs_glob_face_zone) and map Fortran izfppp to it
 - **added** a cs_user_output function in cs_user_parameters.c (usipes equ.)
 - added many C model structures (turbulence, gas mix, ...)

Architecture changes

C translation

- Removed all the remaining mappings between fields and propce array:
 - removed propee and ipproc arrays and nproce
 - removed iprpfl indirection array between field indices and properties numbers; iprpfl is kept for compatibility but is just an identity function (hence still known in user subroutines);
 - irom, iviscl, etc.. are now directly field indices (hence starting from 0)
 - test on variability of specific heat (icp), isochoric specific heat (icv) and volumetric viscosity (iviscv) are consequently shifted of 1 (-1 : uniform field, >= 0: non uniform)
 - mesh viscosity now a 3-dimensional field when strictly orthotropic
 - removed iroma, ivisla, ivista, icpa variables; previous values of these fields now accessed by

field_get_val_prev subroutine.

- Convert Lagrangian and radiative module implementations to C. This affects the associated user subroutines (V4.3).
- Add cs_user_initialization.c, cs_user_physical_properties.c (V4.3).
- Translation of cs_user_extra_op and cs_user_parameters to C in VnV base:
 - removed Fortran arrays corresponding to members of cs_var_cal_opt_t C structure
 - deployed use of get/set var_cal_opt everywhere
 - added cs_post_util functions (R_{ii} post-pro for EVM models on a subset of cells)
 - moved izfppp to C (cs_glob_face_zone) and map Fortran izfppp to it
 - **added** a cs_user_output function in cs_user_parameters.c (usipes equ.)

added many C model structures (turbulence, gas mix, ...)

Architecture changes

C translation

- Removed all the remaining mappings between fields and propce array:
 - removed propee and ipproc arrays and nproce
 - removed iprpfl indirection array between field indices and properties numbers; iprpfl is kept for compatibility but is just an identity function (hence still known in user subroutines);
 - irom, iviscl, etc.. are now directly field indices (hence starting from 0)
 - test on variability of specific heat (icp), isochoric specific heat (icv) and volumetric viscosity (iviscv) are consequently shifted of 1 (-1 : uniform field, >= 0: non uniform)
 - mesh viscosity now a 3-dimensional field when strictly orthotropic
 - removed iroma, ivisla, ivista, icpa variables; previous values of these fields now accessed by

field_get_val_prev subroutine.

- Convert Lagrangian and radiative module implementations to C. This affects the associated user subroutines (V4.3).
- Add cs_user_initialization.c, cs_user_physical_properties.c (V4.3).
- Translation of cs_user_extra_op and cs_user_parameters to C in VnV base:
 - removed Fortran arrays corresponding to members of cs_var_cal_opt_t C structure
 - deployed use of get/set var_cal_opt everywhere
 - added cs_post_util functions (R_{ii} post-pro for EVM models on a subset of cells)
 - moved izfppp to C (cs_glob_face_zone) and map Fortran izfppp to it
 - **added** a cs_user_output function in cs_user_parameters.c (usipes equ.)

added many C model structures (turbulence, gas mix, ...)

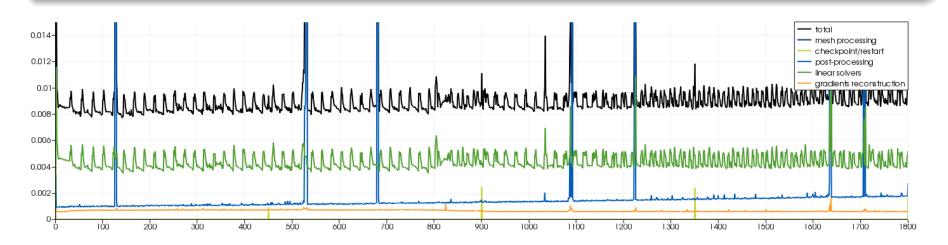
Architecture changes

C translation

- Removed all the remaining mappings between fields and propce array:
 - removed propee and ipproc arrays and nproce
 - removed iprpfl indirection array between field indices and properties numbers; iprpfl is kept for compatibility but is just an identity function (hence still known in user subroutines);
 - irom, iviscl, etc.. are now directly field indices (hence starting from 0)
 - test on variability of specific heat (icp), isochoric specific heat (icv) and volumetric viscosity (iviscv) are consequently shifted of 1 (-1 : uniform field, >= 0: non uniform)
 - mesh viscosity now a 3-dimensional field when strictly orthotropic
 - removed iroma, ivisla, ivista, icpa variables; previous values of these fields now accessed by

field_get_val_prev subroutine.

- Convert Lagrangian and radiative module implementations to C. This affects the associated user subroutines (V4.3).
- Add cs_user_initialization.c, cs_user_physical_properties.c (V4.3).
- Translation of cs_user_extra_op and cs_user_parameters to C in VnV base:
 - removed Fortran arrays corresponding to members of cs_var_cal_opt_t C structure
 - deployed use of get/set var_cal_opt everywhere
 - added cs_post_util functions (R_{ii} post-pro for EVM models on a subset of cells)
 - moved izfppp to C (cs_glob_face_zone) and map Fortran izfppp to it
 - added a cs_user_output function in cs_user_parameters.c (usipes equ.)


added many C model structures (turbulence, gas mix, ...)

Architecture changes

Output

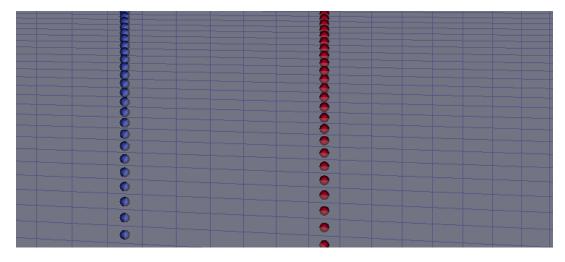
- Add timer statistics and plots for different stages and operators (V4.1).
 - Base timers for each time step (with initialization as time step 0) are now available in the timer_stats.csv file (or timer_stats.dat if the default format is changed).
 - Final performance data is also moved from listing to performance.log.

Architecture changes

Output

- Improvements to output update behavior (V4.2)
 - 'listing' and probes output is usually buffered, so it is sometimes difficult to know how a run is making progress.
 - creating an empty control_file in the run directory (for example, running "touch control_file" in a terminal) forces update of those files at the beginning of the next time step.

Improvements to postprocessing writer handling (V4.3, V5.0)


- writers can now use the 'separate_meshes' option to create a separate format-specific writer per mesh.
- add 'plot' and 'time_plot' writer types
- probes and user-function defined profiles use this mechanism;
 GUI-defined profiles still use the old mechanism.
- profiles along a line segment may use the local mesh resolution rather than uniform user-defined sampling.

Architecture changes (V5.0)

- Add functions for definition of mesh groups during mesh preprocessing.
- Replaced icond keyword by icondb, icondv to allow to enable wall condensation and condensation on internals at the same time.
- Probes output activation is now based on field post_vis keyword, and does not allow fine-grained per-variable probes selection anymore (this being little-used, and feasible through use of additional probe sets).
- Added range set structure, to ease operations related to handling of an owning rank for distributed entities.
- Refactored parallel numbering for space-filling curves and added numberings based on a 1D series of real values (used in parallel output of profiles).
- Add configuration options --with-med=salome, --with-hdf5=salome, and --with-cgns=salome to use Salome libraries when --with-salome=... is defined

Code_Saturne dev. team

Code_Saturne 2017 [52/55]

Grand challenge on EOLE EDF cluster: 450 nodes Billion cell LES to get pressure load on rods

Code_Saturne 2017 [53/55]

Take home messages

Keep using!

Take home messages

Keep feed-backing!

BugTracker

Take home messages

Keep coding!

BugTracker

Code_Saturne dev. team

Code_Saturne 2017 [54/55]

Thank you for your attention. Any question?