Multiphase flow in Code_Saturne using Level-Set method

Phase 1

 ρ_1 ; μ_1

Phase 2

 $\rho_2; \mu_2$

Quentin ROLLAND 1*, Clément JAUSE-LABERT 1

¹ ABMI, Research & Innovation Department, Lyon office * Corresponding author: q.rolland@abmi-groupe.com

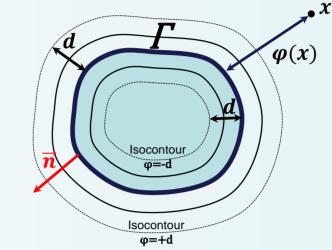
Corresponding author: q.rollana@apmi-groupe.com

ABSTRACT

In the present work, a two-phase flow algorithm is proposed for the Code_Saturne software. Multiphasic simulation is more and more required for various applications in the field of fluid mechanics, such as micro-fluidics or liquid jets, among others. There are several methods currently used in CFD softwares, among which Volume Of Fluid (VOF) and Level-Set (LS) methods are the most common. The first presents the benefit of being mass-conservative but is not well suited for interface capturing. The latter method however introduces a signed distance function, from which a more precise interface between the two fluids can be computed.

A first approach consists in introducing a Level-Set method in Code_Saturne source code. Due to the moving interface, a re-initialization algorithm for the signed function had to be introduced. In order to reduce mass loss during the calculation process, a high order scheme (WENO5) has been implemented in a square lattice mesh. However, a orthogonal mesh does not match general purpose models requiring, depending on the geometry, different mesh types.

To overcome this problem, a second approach consists in implementing new algorithms so as to prevent mass loss by using the same scheme order used in Code_Saturne for any mesh type. Recent work has improved the accuracy of the distance function: for example, a Conservative Level-Set (CLS) is introduced to minimize the re-initialization effort and compared with previous methods regarding its mass conservation. We finally end-up with perspectives of improvement to have a fully functional algorithm in the coming future for Code_Saturne.


LEVEL-SET METHOD

- Precise position of the interface
 - Physical properties interface jump
 - Surface tension: Continuum Surface Force (CSF)

$$F_{\sigma} = \int_{\Omega} \sigma \kappa(\varphi) \nabla \varphi \delta(\varphi) d\Omega$$

Interface capturing method

- Scalar function level-set: φ
- Signed distance function

 $\varphi(x,t) = 0, x \in \Gamma$ $\varphi(x,t) < 0, x \in \Omega_1$ $\langle \varphi(\mathbf{x}, \mathbf{t}) > 0, \mathbf{x} \in \Omega_2 / \Omega_2 \rangle$

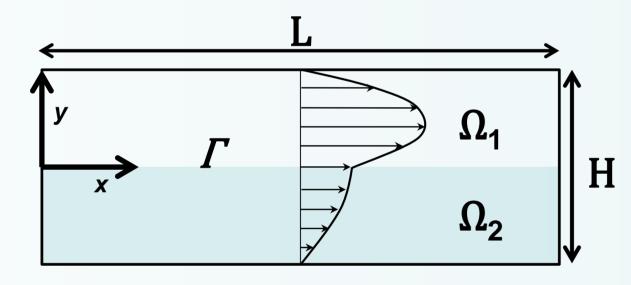
- Re-initialization of the level-set method:
 - $|\nabla \mathbf{d}| = 1$ The signed distance has the following property:
 - Re-initialization function of method function:

$$\frac{\partial \varphi}{\partial \tau} + \operatorname{sign}(\varphi_0)(|\nabla \varphi| - 1) = 0, \qquad \varphi_0 = \varphi(\tau = 0, x)$$

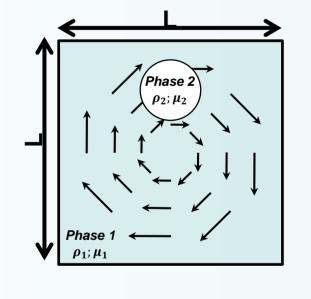
RESULTS

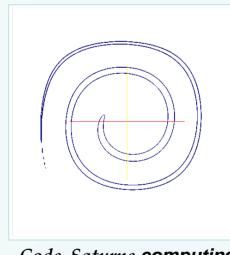
Results with high order discretization scheme (WENO5) Grid meshes

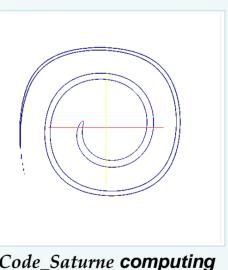
Results computed in Code_Saturne



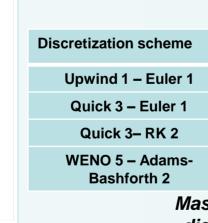
- Numerical results and validation from the literature :
 - Poiseuille two phase flow test
 - Analytical results compared with numerical results
 - Validation of physical property changes

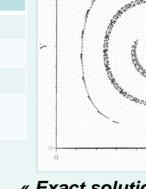

$$\begin{split} \rho(\phi) &= \rho_1 + (\rho_2 - \rho_1) H(\phi) \\ \mu(\phi) &= \mu_1 + (\mu_2 - \mu_1) H(\phi) \end{split} \text{ with the heavyside function } H(\phi) \end{split}$$

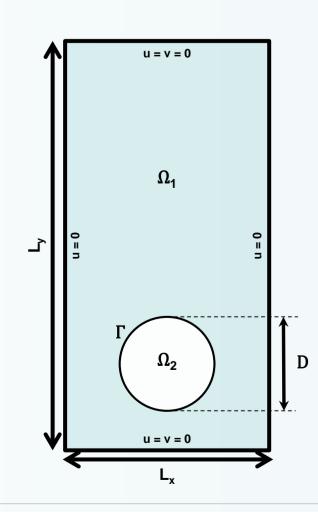


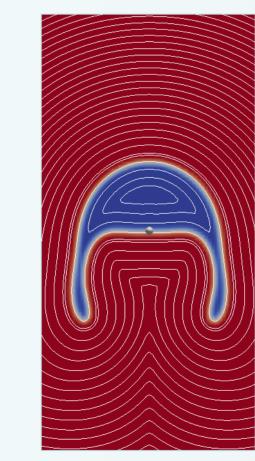

Theoretical axial celerity profile and Code_Saturne numerical results

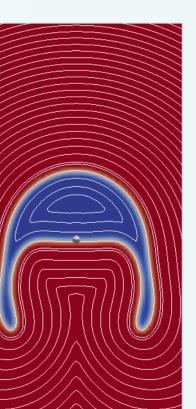
Vortex test


Validation of Level-Set scalar transport




Mass loss with different discretization scheme




« Exact solution » for t = 3s(PhD theses Tanguy, 2004)


Rising bubble test

Validation of the re-initialization function

Rising bubble computation from various CFD software [2008 : Quantitative benchmark computations of two-dimensional bubble dynamics. MOX Report, Politecnico di Milano]

Results with Centered scheme (Code_Saturne) Any mesh type

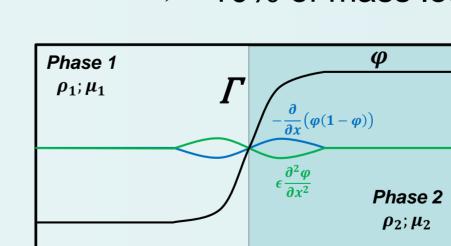
- Level-Set method
 - Re-initialization function with small time steps
 - Modification of the re-initialization function during the iteration loop

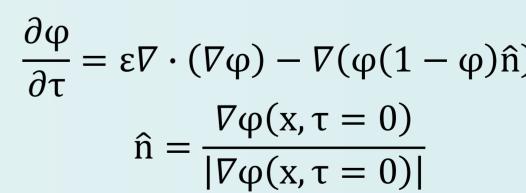
$$\frac{\partial \varphi}{\partial \tau} = \pm \operatorname{sgn}(\varphi_0)(1 - |\nabla \varphi|)$$

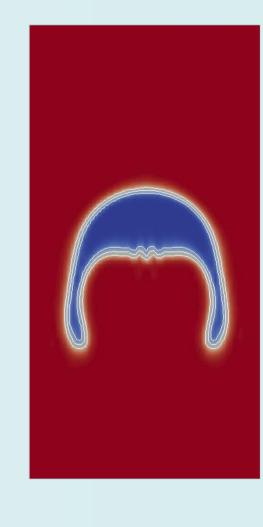
- > 5% of mass loss
- ➤ 600~700 iterations every 10 time steps
- Bubble shape changed

Adding a diffusion term

$$\frac{\partial \varphi}{\partial \tau} = \operatorname{sgn}(\varphi_0)(1 - |\nabla \varphi|) + \alpha \nabla^2 \varphi$$
$$\alpha = \frac{\max(\Delta x, \Delta y)}{2}$$


- > 5% of mass loss
- ➤ 4~10 iterations every 10 time steps
- No precise interface
- Conservative Level-Set method (CLS)


[J of Computational Physics 225 (2007) 785-807, E. Olsson]


- Adding a compression term to balance the diffusion term
- Initialization for $\phi = 0.5$

$$\varphi = \frac{1}{2} \left(1 + \tanh\left(\frac{x}{2\varepsilon}\right) \right)$$

> 10% of mass loss, artificial oscillations

CONCLUSIONS AND PERSPECTIVES

- Algorithms with low order discretization scheme show convincing results but are still work in progress
 - Up-coming improvement of the re-initialization function:
 - > Improvement of the CLS method algorithm (with helps of CS internal functions)
 - > Development of the VOSET method (coupled Volume-Of-Fluid and Level-Set methods) to prevent mass loss