
Code_Saturne’s Extreme Scaling on IBM Blue Gene/Qs
Charles Moulinec1, Yvan Fournier2, Ales Ronovsky3, Vendel Szeremi1, Pascal Vezolle4, David R. Emerson1

1SCD, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK
2EDF R&D, 6 quai Watier, 78400 Chatou, FR

3Department of Applied Mathematics, VSB-Technical University of Ostrava, 708 00 Ostrava, CZ
4IBM France, 1 Rue de la Vieille Poste - 34006 Montpellier, FR

Introduction

Code_Saturne [1, 2] is an open-source multi-purpose
CFD software developed by EDF-R&D (see Fig. 1
for its toolchain). It is currently being prepared for
Exascale and with this objective tested on some of
the largest existing high-end machines.

Figure 1: Code_Saturne’s toolchain

This works focuses on assessing Code_Saturne
4.2.0’s performance on IBM Blue Gene/Qs (BGQs),
namely Mira (Argonne) [3] and Juqueen (Jülich) [4],
ranked #5 and #11 (November 2015’s Top500 list).

Hardware - Settings

Mira and Juqueen are made of 1,024 node racks with
16 cores or 64 threads per node (16GiB RAM per
node). Mira has got 48 racks and Juqueen 28.
Code_Saturne uses MPI/OpenMP for parallelism,
and the Modified Compressed Sparse Row (MSR)
algorithm is used here as a storage format.

Test Cases

The first test case consists of the flow in staggered-
distributed tube bundles. The computational do-
main is made of 2 full tubes leading to an original 26
million cell (26M) hexa mesh. Mesh multiplication
(MM) [5] is applied 4 times to this mesh to generate
a 105 billion cell mesh (TB_105B). The second
test case deals with the 3-D flow in a lid-driven cu-
bic cavity. The orginal mesh has got 13 million tetra
cells and MM is applied 3 times to generate a 7 bil-
lion cell mesh (LDC_7B).

Partitioning - Halos

Partitioning is carried out by Space Filling Curve
(Hilbert) and its performance is shown in Tab. 1.
This stage requires using almost 1 GiB per MPI task
and 16 ranks/node are used for all the simulations.

LDC_7B TB_105B
#nodes × #ranks Time #nodes × #ranks Time

4,096 × 16 56 s 32,768 × 16 112 s
8,192 × 16 57 s 49,152 × 16 89 s
16,384 × 16 56 s - -
28,672 × 16 73 s - -

Table 1: Time to perform each partition

Ghost cells are set to exchange information between
neighboring subdomains (see timings in Tab. 2).

LDC_7B TB_105B
#nodes × #ranks Time #nodes × #ranks Time

4,096 × 16 32 s 32,768 × 16 112 s
8,192 × 16 40 s 49,152 × 16 376 s
16,384 × 16 56 s - -
28,672 × 16 77 s - -

Table 2: Time to create the halo cells

IOs

Both BGQs file systems are GPFS. Code_Saturne
relies on MPI-IO for IOs, using a single ’shared file’.
Table 3 (resp. 4) shows the time to write (resp.
read) the mesh file on (resp. from) disk. For the
TB_105B case, the file is 19 TiB large.

TB_105B - 19 TiB
#nodes × #ranks Time

16,384 × 16 2,697 s
32,768 × 16 2,536 s

Table 3: Time to write the mesh_output file on disk

LDC_7B - 620 GiB TB_105B - 19 TiB
#nodes × #ranks Time #nodes × #ranks Time

4,096 × 16 46 s 32,768 × 16 112 s
8,192 × 16 28 s 49,152 × 16 262 s
16,384 × 16 32 s - -
28,672 × 16 40 s - -
Table 4: Time to read the mesh_input file from disk

Solver

The Navier-Stokes solver is segregated and the
velocity-pressure coupling computed by a fractional-
step method. The 3 velocity components are coupled
and solved using the Jacobi algorithm. The pres-
sure is computed either using the Algebraic Multi-
grid (AMG) algorithm as a solver with a diagonal
preconditioner (D + AMG) or as a preconditioner
with the Conjugate Gradient algorithm as a solver
(AMG + CG). The first five time-steps are com-
puted for all the simulations.

LDC_7B - D + AMG
MPIs 1 thread 2 threads 4 threads

4,096 × 16 394 s 255 s 255 s
8,192 × 16 251 s 173 s 148 s
16,384 × 16 132 s 96 s 81 s
28,672 × 16 82 s 62 s 56 s

LDC_7B - AMG + CG
MPIs 1 thread 2 threads 4 threads

4,096 × 16 363 s 231 s 191 s
8,192 × 16 214 s 144 s 117 s
16,384 × 16 111 s 76 s 63 s
28,672 × 16 67 s 48 s 41 s

Table 5: CPU time per time-step

TB_105B - D + AMG
MPIs 1 thread 2 threads 4 threads

32,768 × 16 236 s 185 s 117 s
49,152 × 16 170 s 141 s 135 s

TB_105B - AMG + CG
MPIs 1 thread 2 threads 4 threads

32,768 × 16 133 s 112 s 108 s
49,152 × 16 95 s 82 s 78 s

Table 6: CPU time per time-step

Tables 5 and 6 gather the CPU time per time-step as
a function of the number of MPI tasks and threads
for LDC_7B and TB_105B. All the tests show
that using 4 threads per MPI tasks is faster than
using 1 or 2 threads. Moreover, for a given number
of threads per MPI task, a speed-up is observed in all
the cases when the number of MPI tasks is increased.
AMG + CG is always faster than D + AMG.

Final Remarks - Future Work

This work assesses Code_Saturne 4.2.0’s perfor-
mance for 2 types of meshes (hexas only or
tetras only), using MPI/OPenMP on two of the
largest existing BGQs. Simulations were run up
to 3,145,728 threads on Mira and 1,835,008
threads on Juqueen, and reasonable scaling was
observed for both, with a clear gain using 4 threads
per MPI task instead of 1 or 2. The IO tests car-
ried out using MPI-IO were conclusive, showing that
reading the mesh_input file has the same cost as a
few time-steps.
Exascale performance will only be achieved by us-
ing accelerators. Several teams are exploring various
options to optimise the code for Intel Xeon Phis and
Nvidia GPUs.

Acknowledgements

This research used resources of the Argonne Leader-
ship Computing Facility at Argonne National Lab-
oratory (INCITE-PEAC), which is supported by
the U.S. Department of Energy under contract DE-
AC02-06CH11357. The authors would like to thank
the Forschung Zentrum Jülich for performing their
tests during the 2016 Extreme Scaling Workshop.

References

[1] F. Archambeau et al. Int. J. on Fin. Vol. (2004).
[2] Y. Fournier et al. Comp. & Fluids. (2011).
[3] https://www.alcf.anl.gov

[4] http://www.fz-juelich.de

[5] A. Ronovsky et al. 3rd PARENG. (2013).

https://www.alcf.anl.gov
http://www.fz-juelich.de

