Head loss estimation in diaphragm type configuration at EDF hydraulic engineering A.GRAND-CLÉMENT

Contextualization and Mesh configurations to optimize computational time

Distance to the boundary 84m Diaphragm

✓ Concerns : The surge chamber allows to decrease the high pressure

The high pressure drop in the variation in the surge shaft

Comparison results for different mesh generators with *Code_Saturne*

Tetra mesh with

refinement and boundary layers

64

Pressure drop profiles in unsteady calculation Comparison between Fluent and Code_Saturne (present study) results

	hexa mesh	tetra mesh
Salomé	K=0.0375	K=0.028
Element number	56889	1226000
Ansys	K=0.0345	K=0.025
Element number	40000	231823
Experimental	K=0.0240	
Lowest deviation (%)	4%	

 Similar results compared with previous computational calculations

4% deviation with experimental results for the tetrahedral mesh with fine discretization at the diaphragm surface and boundary layers

Difficulties encountered

Yplus

5.402e+03

4500

3000

1500

 $\pm 0.000e + 00$

• Block division for the hexa mesh generation

• y+ too high in the interest domain even for k-eps model

✓ Difficulties to handle the meshes defaults Divergence solver for boundary layers with hexaedral mesh Method for extracting value on a surface

