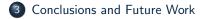


LES of a simplified HVAC system used for aero-acoustic predictions

S. Rolfo¹ C. Moulinec ¹ D. R. Emerson ¹

¹STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom stefano.rolfo@stfc.ac.uk

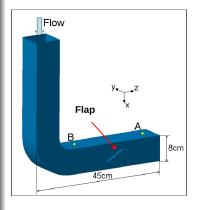
April 2nd 2015



Heat and Ventilation Air Conditioning: HVAC

- Introduction
- Flow Features
- Acoustic

Paraview in a Visualization Cluster (Placement of E. Harrison)



HVAC

ence & Technology

- HVAC stands for Heat and Ventilation Air Conditioning and it is a common system in several engineering application
- This simplified configuration has been proposed by German car industry for validation of numerical methods
- The system is a composed by a duct bend with a flap
- The duct creates a jet in an open space
- Both experimental data for fluid flow (PIV) and aeroacoustic are available

HVAC: Test case definition

Test case definition

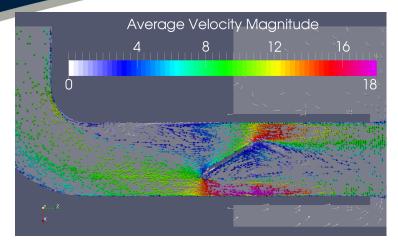
- LES with Smagorinsky model
- Standard air at 15° C
- Inlet based on a fully developed duct flow computed with RANS model (4 eqs v²f) with DF-SEM for turbulent fluctuations
 - Bulk velocity $U_B = 7.5~m/s \Rightarrow Re pprox 40000$
 - Low-Re Reynolds stress model also tested but flow is re-laminarize
- $\bullet\,$ Free inlet/outlet BC at the side and at the exit of the plenum
 - $\bullet\,$ BC based on the Bernoulli relation between the face and a point on the same stream-line place at ∞ in case of incoming flow
 - Homogeneous Neumann is applied on the velocity
 - Assuming $\underline{u}_{\infty} = 0$ the dynamic pressure at the face is:

$$p_f = -\frac{1+K}{2}\rho_f \underline{u}_f \cdot \underline{u}_f$$

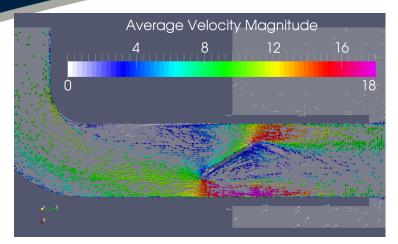
with K being a head loss.

Flow Visualisation

(Loading movie)


Figure 1: Iso-surfaces of Vorticity.

ROLFO et al.

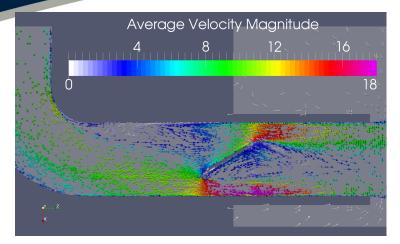


- Flow separation after the bend
- Impingement of the separated flow on the obstacle
- Recirculation behind the obstacle
 Two counter-rotating vortices

ROLFO et al.

Mean Flow (Mid Plane)

HVAC

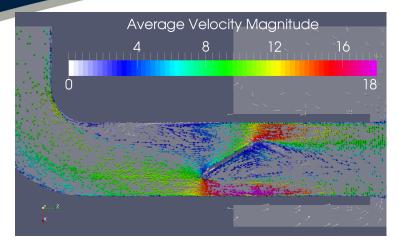

- Flow separation after the bend
- Impingement of the separated flow on the obstacle

ROLFO et al.

Recirculation behind the obstacle
 Two counter-rotating vortices

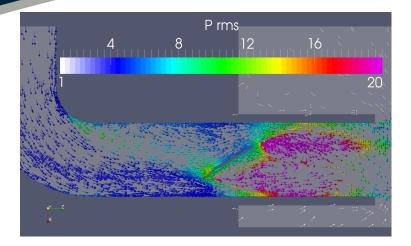
Mean Flow (Mid Plane)

HVAC


- Flow separation after the bend
- Impingement of the separated flow on the obstacle

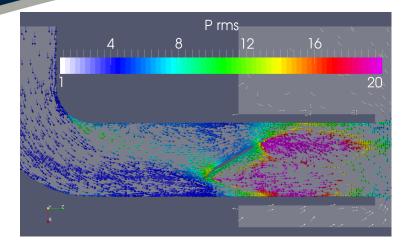
ROLFO et al.

Recirculation behind the obstacle
 Two counter-rotating vortices

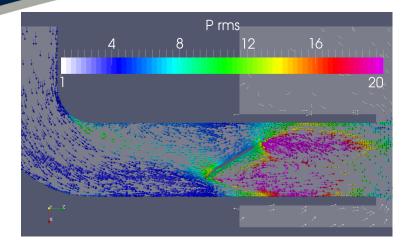

- Flow separation after the bend
- Impingement of the separated flow on the obstacle

ROLFO et al.

- Recirculation behind the obstacle
 - Two counter-rotating vortices

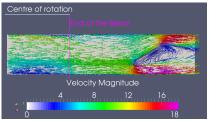

Pressure RMS (Mid Plane)

- Pressure fluctuations are peaking in recirculation areas
- These areas are candidate to be the location of the noise sources

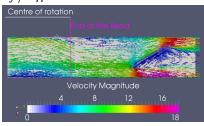

Pressure RMS (Mid Plane)

• Pressure fluctuations are peaking in recirculation areas • These areas are candidate to be the location of the noise sources

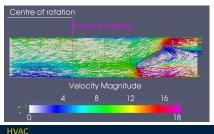
Pressure RMS (Mid Plane)


- Pressure fluctuations are peaking in recirculation areas
- These areas are candidate to be the location of the noise sources

Mid Plane

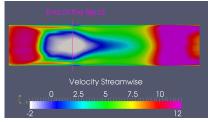


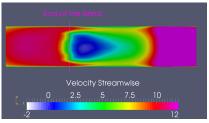
$$2y/D_H = 0.75$$



ROLFO et al.

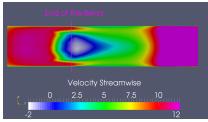
XZ plane (obstacle plane) $2y/D_H = 0.5$


$$2y/D_{H} = 0.85$$

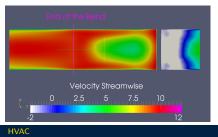


YZ plane (View from bending centre)

Top wall $x/D_H = 0.01$

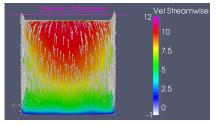


 $x/D_{H} = 0.125$

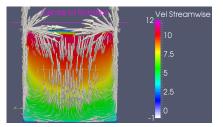


ROLFO et al.

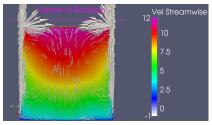
 $x/D_{H} = 0.06$



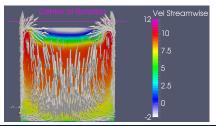
 $x/D_H = 0.375$



Inlet bend $\theta = -90^{\circ}$



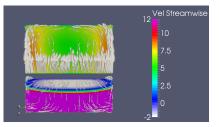
 $\theta = -30^{o}$



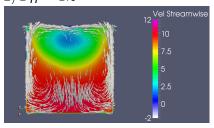
ROLFO et al.

XY plane (Streamwise) $\theta = -60^{\circ}$

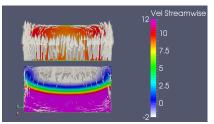
Outlet bend $\theta = 0^o$



Near outlet bend $z/D_H = 0.125$

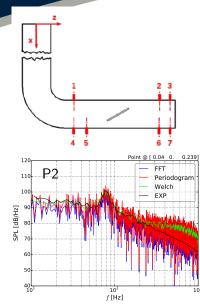


 $z/D_H = 1.75$

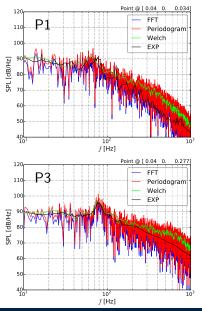


ROLFO et al.

XY plane (Streamwise) $z/D_H = 1.0$



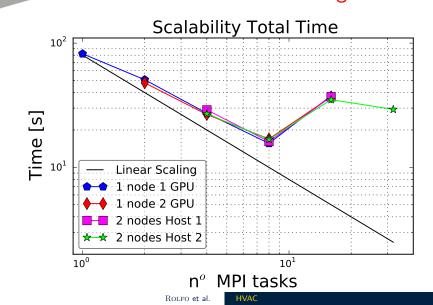
 $z/D_H = 2.0$



Wall pressure fluctuations

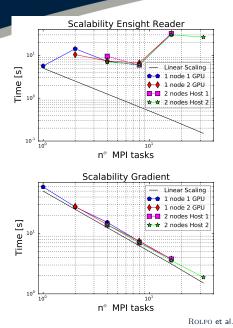
ROLFO et al.

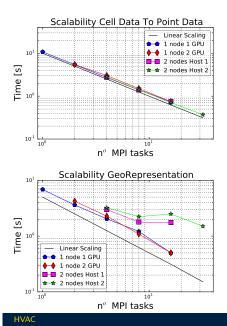
Paraview on a cluster


Why Paraview?

- It is not always possible to use co-processing (i.e. Catalyst)
- Possible to use remote machines with Client/Server mode
- We have a visualization cluster: maybe we can use it:
 - 2 fat nodes with 32 computing nodes and 64GB RAM
 - 2 GPUs attached to each node

The Pipeline	III ⊙ ParaView 4.3.1.64-bit ⊙⊙ Ble Edit View Sources Filters Tools Çatalyst Macros Help
	De Bar gen goots jour jour genar g
 Load of the data ⇒ EnsightReader 	Image: State of the s
• Convert data from cells to nodes \Rightarrow	
CellToPoint ● Gradient ⇒ GradUn-	Information Properties 20 Properties 20 20 Property Brierr, KDelete 20 Parth Ext control 15
structuredMesh ● Update the layout ⇒ GeoRepresentation	Importes (Clp1) Importes (
. ,	Show Hane Orgin C07090909 O C O


Scalability Pipeline in loading a time step



Scalability individual Filters

HVAC

- LES of a simplified HVAC has been presented and the available results are in agreement with experimental data available
- Application of Client/Server Paraview mode has been shown and poor scalability of the Ensight reader has been identified

Future work

- Further comparison with experimental value (hydrodynamic)
- Further investigations into aeroacoustic using the Curle's analogy
- More calculations with different SGS models are on going
- Awarding of a 1 year project to implement a FWH aeroacoustic module into Code_Saturne

